
XN-1SSI Technologiemodul

Impressum

Hersteller

Eaton Automation AG
Spinnereistrasse 8-14
CH-9008 St. Gallen
Schweiz
www.eaton-automation.com
www.eaton.com

Support

Region North America

Eaton Corporation
Electrical Sector
1111 Superior Ave.
Cleveland, OH 44114
United States
877-ETN-CARE (877-386-2273)
www.eaton.com

Andere Regionen

Bitte kontaktieren Sie Ihren lokalen Lieferanten oder senden Sie eine E-Mail an: automation@eaton.com

Originalanleitung

Die deutsche Ausführung dieses Dokuments ist die Originalanleitung.

Übersetzungen der Originalanleitung

Alle nicht deutschen Sprachausgaben dieses Dokuments sind Übersetzungen der Originalanleitung.

Redaktion

Monika Jahn

Marken- und Produktnamen

Alle in diesem Dokument erwähnten Marken- und Produktnamen sind Warenzeichen oder eingetragene Warenzeichen der jeweiligen Titelinhaber.

Copyright

© Eaton Automation AG, CH-9008 St. Gallen

Alle Rechte, auch die der Übersetzung, vorbehalten.

Kein Teil dieses Dokuments darf in irgendeiner Form (Druck, Fotokopie, Mikrofilm oder einem anderen Verfahren) ohne schriftliche Genehmigung der Firma Eaton Automation AG, St. Gallen reproduziert oder unter Verwendung elektronischer Systeme verarbeitet, vervielfältigt oder verbreitet werden.

Änderungen vorbehalten.

Warnung!

Gefährliche elektrische Spannung!

Vor Beginn der Installationsarbeiten

- Gerät spannungsfrei schalten
- Gegen Wiedereinschalten sichern
- Spannungsfreiheit feststellen
- Erden und kurzschließen
- Benachbarte, unter Spannung stehende Teile abdecken oder abschranken.
- Die für das Gerät angegebenen Montagehinweise sind zu beachten.
- Nur entsprechend qualifiziertes Personal gemäß EN 50110-1/-2 (DIN VDE 0105 Teil 100) darf Eingriffe an diesem Gerät vornehmen.
- Achten Sie bei Installationsarbeiten darauf, dass Sie sich statisch entladen, bevor Sie das Gerät berühren.
- Die Funktionserde (FE) muss an die Schutzerde (PE) oder den Potenzialausgleich angeschlossen werden. Die Ausführung dieser Verbindung liegt in der Verantwortung des Errichters.
- Anschluss- und Signalleitungen sind so zu installieren, dass induktive und kapazitive Einstreuungen keine Beeinträchtigung der Automatisierungsfunktionen verursachen.
- Einrichtungen der Automatisierungstechnik und deren Bedienelemente sind so einzubauen, dass sie gegen unbeabsichtigte Betätigung geschützt sind.
- Damit ein Leitungs- oder Aderbruch auf der Signalseite nicht zu undefinierten Zuständen in der Automatisierungseinrichtung führen kann, sind bei der E/A-Kopplung hard- und software-seitig

- entsprechende Sicherheitsvorkehrungen zu treffen.
- Bei 24-Volt-Versorgung ist auf eine sichere elektrische Trennung der Kleinspannung zu achten. Es dürfen nur Netzgeräte verwendet werden, die die Forderungen der IEC/HD 60364-4-41 (DIN VDE 0100 Teil 410) erfüllen.
- Schwankungen bzw. Abweichungen der Netzspannung vom Nennwert dürfen die in den technischen Daten angegebenen Toleranzgrenzen nicht überschreiten, andernfalls sind Funktionsausfälle und Gefahrenzustände nicht auszuschließen.
- NOT-AUS-Einrichtungen nach IEC/EN 60204-1 müssen in allen Betriebsarten der Automatisierungseinrichtung wirksam bleiben. Entriegeln der NOT-AUS-Einrichtungen darf keinen Wiederanlauf bewirken.
- Es sind Vorkehrungen zu treffen, dass nach Spannungseinbrüchen und ausfällen ein unterbrochenes Programm ordnungsgemäß wieder aufgenommen werden kann. Dabei dürfen auch kurzzeitig keine gefährlichen Betriebszustände auftreten. Ggf. ist NOT-AUS zu erzwingen.

Sicherheitsvorschriften

- An Orten, an denen in der Automatisierungseinrichtung auftretende Fehler Personen- oder Sachschäden verursachen können, müssen externe Vorkehrungen getroffen werden, die auch im Fehler- oder Störfall einen sicheren Betriebszustand gewährleisten beziehungsweise erzwingen (z. B. durch unabhängige Grenzwertschalter, mechanische Verriegelungen usw.).
- Die elektrische Installation ist nach den einschlägigen Vorschriften durchzuführen (z. B. Leitungsquerschnitte, Absicherungen, Schutzleiteranbindung).
- Alle Arbeiten zum Transport, zur Installation, zur Inbetriebnahme und zur Instandhaltung dürfen nur von qualifiziertem Fachpersonal durchgeführt werden (IEC/HD 60364 (DIN VDE 0100) und nationale Unfallverhütungsvorschriften beachten).

	Inhaltsverzeichnis	5
	Zu diesem Handbuch	9
	Lesekonventionen	
1	Produktbeschreibung	11
	Allgemeine Produktbeschreibung	
	 Versorgungsspannung 	
	– Übertragungsverfahren	
	- Datenaustausch	
	- Interne Register - Lesen und Schreiben	
	- Registerzugriff und Bedeutung	
	- Vergleichswert 1, Vergleichswert 2	
	- Untergrenze, Obergrenze	
	- Offsetfunktion / Ladewert	
	Statusmeldungen des SSI-Gebers	
	Rücksetzen der Registerbank. Technische Eigenschaften	20
	Prinzipschaltbild XN-1SSI	
	Technische Daten XN-1SSI	
	Anzeigeelemente	
	Basismodule	
	Technische Daten der Basismodule	
	Anschlussbild SSI-Geber	
	7.000.0000.0000.000	02
2	Integration des Moduls in PROFIBUS-DP	
	Datenabbild unter PROFIBUS-DP	33
	- Prozesseingabe	
	- Prozessausgabe	
	- Diagnose	
	– Parameter	
	Fehlererkennung / Meldungen	
	Funktionsbaustein für SIMATIC S7	49

3	Integration des Moduls in DeviceNet	
	Prozessabbild	. 57
	SSI Module CLass (VSC116)	. 59
4	Integration des Moduls in CANopen	. 77
	Einleitung	
	- Allgemeines	
	Encoder-spezifische Default-PDOs	
	Die Encoders-Device-Profile-Implementierung	
	Übersicht Encoders-Device-Profile-Bereich	
	- Objekt 5800hex - Encoder Basic Mode	
	- Objekt 5801hex - Encoder Config	
	- Objekt 5802hex - Encoder Status	
	- Objekt 5803hex - Encoder Flags	. 87
	- Objekt 5804hex - Encoder Diag	. 89
	Objekt 5804hex — Encoder Diag	. 91
	- Objekt 5806hex - SSI Optional Encoder Status	. 94
	- Objekt 5808hex - Encoder Control	. 95
	 Objekt 5810hex – Counter Load Prepare Value 	. 95
	 Objekt 5811hex – Counter Puls Width 	. 95
	 Objekt 5820hex – Measuring Integration Time 	. 95
	- Objekt 5821hex - Measuring Low Limit	. 95
	- Objekt 5822hex - Measuring High Limit	. 95
	 Objekt 5823hex – Measuring Units per Revolution 	
	- Objekt 5840hex - SSI Diag Mapping	
	Objekt 6800hex - Operating Parameters	. 98
	Objekt 6810hex – Preset Values	
	for Multi-Sensor Devices	
	- Objekt 6820hex - Position Value	
	Objekt 6B00hex – CAM State Register	
	Objekt 6B01hex – CAM Enable Register	
	 Objekt 6B02hex – CAM Polarity Register 	
	Objekt 6B10hex – CAM1 Low Limit	
	Objekt 6B20hex – CAM1 High Limit	
	- Objekt 6B30hex - CAM1 Hysteresis	
	- Objekt 6D00hex - Operating Status	
	 Objekt 6D01hex - SingleTurn Resolution (rotary), 	
	Measuring step (linear)	104

Stichwortverzeichnis	10
Objekt 6FFFhex - Device Type Zusätzliche Emergencies	104
 Objekt 6D02hex - Number of distinguishable revolutions 	10

Zu diesem Handbuch

Lesekonventionen

In diesem Handbuch werden Symbole eingesetzt, die folgende Bedeutung haben:

Achtung!

warnt vor leichten Sachschäden.

Vorsicht!

warnt vor schweren Sachschäden und leichten Verletzungen.

Warnung!

warnt vor schweren Sachschäden und schweren Verletzungen oder Tod.

macht Sie aufmerksam auf interessante Tipps und Zusatzinformationen

Zu diesem Handbuch Lesekonventionen

1 Produktbeschreibung

Allgemeine Produktbeschreibung

Das Technologie-Modul XN-1SSI ist eine weitere Komponente des XI/ON-Sortiments in einem Scheibengehäuse. Es ermöglicht den Anschluss von SSI-Gebern mit einer Wortlänge bis maximal 32 Bit und einer maximalen Bitübertragungsrate von 1 MBit/s. Das Modul liefert eine Versorgungsspannung von 24 V DC (500 mA). Zum Auslesen der SSI-Geberdaten wird vom XN-1SSI Modul ein Taktsignal ausgegeben, mit dem der Geberwert über den Signaleingang eingelesen werden kann. Das Taktsignal und der Signaleingang arbeiten nach dem RS422-Format.

Unterstützt wird die Möglichkeit, im laufenden Betrieb des Moduls, das Modul zu stecken und zu ziehen, ohne die Modulelektronik zu zerstören. Nach dem Ziehen bzw. Stecken des Moduls wird dieses beim nächsten Telegramm erkannt, die Modulliste aktualisiert und die Kommunikationsfähigkeit mit allen Teilnehmern der Station wieder hergestellt. Die Kommunikationsfähigkeit bleibt erhalten, solange weniger als drei direkt folgende Module gezogen sind. Durch Ziehen des Elektronikmoduls wird die Versorgungsspannung des SSI-Gebers von der Feldspannung getrennt.

Versorgungsspannung

Die Versorgung des angeschalteten SSI-Gebers erfolgt über die Ausgangsklemmen des SSI-Moduls. Die am Power Feeding-Modul XN-PF-24VDC-D bzw. Bus Refreshing-Modul XN-BR-24VDC-D angelegte Spannung wird über das Stromschienensystem weitergeleitet und von dort direkt auf die Ausgangsklemmen gebrückt. Die Modulbuselektronik wird vom Modulbus gespeist.

Übertragungsverfahren

Das XN-1SSI-Modul ermöglicht eine applikationsgerechte Übertragung der SSI-Daten. Mittels Parametrierung des XN-1SSI-Moduls wird ein funktionsfähiges Übertragungsverfahren eingestellt.

Eine Datenübertragung im Gray- oder Binär-Code kann durchgeführt werden.

Die Daten können mit Bitübertragungsraten von 62,5 kBit/s bis 1 MBit/s übertragen werden.

Der SSI-Geberwert kann mit 1 bis 32 Bit in einem Datenrahmen dargestellt werden. An der MSB-Seite sowie an der LSB-Seite können Bits ausgeschaltet werden. An der MSB-Seite geschieht das durch Maskierung. Mit der Maskierung nehmen die ungültigen Bits den Wert "0"an. An der LSB-Seite werden die ungültigen Bits durch Rechtsschieben des gesamten Datenframes entfernt. Die fehlenden Bits auf der MSB-Seite werden mit Nullen aufgefüllt.

Datenaustausch

Die Datenübertragung von der SPS zum XN-1SSI-Modul realisieren die Prozessausgabedaten, die Datenübertragung vom XN-1SSI-Modul zur SPS die Prozesseingabedaten.

Über die Prozessausgabedaten kann das Schreiben der Register ausgeführt und das Lesen der Register angefordert werden. Die Kommunikation mit dem SSI-Geber kann gestoppt und Vergleichsoperation ein- und ausgeschaltet werden.

Mit den Prozesseingabedaten können die Inhalte der modulinternen Register ausgelesen werden, wobei der SSI-Geberwert Teil des Registers ist. Das Beschreiben dieser Register kann gesteuert werden. Ergebnisse verschiedener Vergleichsope-

rationen werden geliefert sowie der Kommunikationsstatus mit dem SSI-Geber angezeigt. Statusmeldungen, die vom angeschlossenen SSI-Geber generiert wurden, können mit den Prozesseingabedaten zur SPS weitergereicht werden.

Die Diagnosemeldungen sind zusätzlich in die Prozesseingabedaten eingebettet.

Neben dieser zyklischen Datenübertragung, werden mit der Parameter- und Diagnoseschnittstelle azyklische Daten übertragen. Über die Parameterschnittstelle werden auf dem SSI-Modul die Parameter zur Datenübertragung, wie z.B. Bitübertragungsrate, Telegrammlänge usw. eingestellt. Die Diagnoseschnittstelle liefert dem übergeordnetem System Fehlermeldungen, wie z.B. Parametrierungsfehler.

Interne Register - Lesen und Schreiben

Beim SSI-Modul ist eine universelle Registerschnittstelle realisiert worden, die Zugriff auf bis zu 64 Register ermöglicht. Der Zugriff erfolgt über die Prozessdaten

Für den schreibenden Zugriff ist vorab sicherzustellen, dass die Register-Schreib-Schnittstelle in Grundstellung ist, also kein laufender Schreibzugriff ansteht. Dies ist gegeben, wenn in den Prozessausgabedaten REG_WR = 0 ist und dies in den Prozesseingabedaten über REG_WR_AKN = 0 bestätigt ist. Nun kann der Schreibzugriff erfolgen. Dazu müssen mit den Prozessausgabedaten folgende Werte übergeben werden:

REG_WR_ADR = Registeradresse, REG_WR_DATA = zu schreibender Wert (32Bit) REG_WR = 1 (Schreibkommando)

Das SSI-Modul bestätigt die Bearbeitung des Schreibkommandos über die Prozesseingabedaten damit, dass das Bit REG_WR_AKN = 1 gesetzt wird. Das Ergebnis, ob das Register erfolgreich beschrieben worden ist, wird dabei in den Prozesseingabedaten durch REG_WR_ACEPT = 1 bestätigt. Konnte das Register nicht beschrieben werden (keine Zugriffsberechtigung, Wertebereich verlassen, ...), wird dies durch REG_WR_ACEPT = 0 gemeldet. Anschließend muss die Schreiboperation durch REG_WR = 0 beendet werden, um wiederum die Grundstellung einzunehmen.

Für den lesenden Zugriff wird die Adresse REG_RD_ADR der Prozessausgabedaten verwendet. Der gelesene Registerinhalt ist in REG_RD_DATA (Byte 4-7) eingetragen, wenn zur Bestätigung die Adresse REG_RD_ADR in die Prozesseingabedaten übernommen wurde und REG_RD_ABORT = 0 das fehlerfreie Auslesen des Registers bestätigt. Mit REG_RD_ABORT = 1 wird gemeldet, dass das Register nicht gelesen werden konnte. In REG_RD_ADR der Prozesseingabedaten steht dann die Adresse, auf die der Zugriff nicht erfolgreich durchgeführt werden konnte. Die Nutzdaten werden dabei auf NULL gesetzt.

Registerzugriff und Bedeutung

Bezeichnung		Beschreibung	Default (HEX)
REG_SSI_POS	0	Aktueller binärer SSI-Geberwert	
REG_MAGIC_NO	1	Magic Number (0xaa55cc33)	
REG_HW_VER	2	Hardware-Version	
REG_SW_VER	3	Software-Version	
REG_SF	4	Special Function Register	
REG	5	Reserve	
	-		
REG	13	Reserve	
REG_WR_ADR	14	Zeigerregister OUT	
REG_RD_ADR	15	Zeigerregister IN	
REG_DIAG1	16	Diagnosedaten	
REG	17	Reserve	
REG	19	Reserve	
REG_PARA1	20	Parameterdaten	0 x19 01 00 00
REG	21	Reserve	
REG	31	Reserve	
REG_GRAY_POS	32	Graycodierter aktueller SSI-Geberwert.	
REG_SSI_FRAME	33	Vollständiger vom SSI-Geber eingelesener Rahmen.	
REG_CMP1	34	Vergleichswert 1	0 × 00 00 00 00
REG_CMP2	35	Vergleichswert 2	0 × 00 00 00 00
REG	36	Reserve	
REG	47	Reserve	

Bezeichnung		Beschreibung	Default (HEX)
REG_LOWER_LIMI T	48	Untergrenze	0 × 00 00 00 00
REG_UPPER_LIMIT	49	Obergrenze	0 x FF FF FF FF
REG_OFFSET	50	Offsetwert	0 × 00 00 00 00
REG_SSI_MASK	51	Auswahl der in die Diagnose- Schnittstellen übernommenen SSI- Geber-Diagnosen	0 × 00 00 00 00
REG	52	Reserve	
REG	63	Reserve	

Bezeichnung		Prozess- ausgabe- schnitt- stelle	Spei- cherung im Modul	Prozess- eingabe- schnitt- stelle	Para- meter- schnitt- stelle	Diag- nose- schnitt- stelle
REG_SSI_ POS	0			RD		
REG_ MAGIC_NO	1			RD		
REG_HW_ VER	2			RD		
REG_SW_ VER	3			RD		
REG_SF	4	WR	flüchtig	RD		
REG	5					
	-			-		
REG	13					
REG_WR_ ADR	14			RD		
REG_RD_ ADR	15			RD		
REG_DIAG1	16			RD		RD

Bezeichnung		Prozess- ausgabe- schnitt- stelle	Spei- cherung im Modul	Prozess- eingabe- schnitt- stelle	Para- meter- schnitt- stelle	Diag- nose- schnitt- stelle
REG	17					
REG	19					
REG_PARA1	20	WR	nicht flüchtig	RD	WR	
REG	21					
	-					
REG	31					
REG_GRAY_ POS	32			RD		
REG_SSI_ FRAME	33			RD		
REG_CMP1	34	WR	flüchtig	RD		
REG_CMP2	35	WR	flüchtig	RD		
REG	36					
	-					
REG	47					
REG_ LOWER_ LIMIT	48	WR	nicht flüchtig	RD		
REG_ UPPER_ LIMIT	49	WR	nicht flüchtig	RD		
REG_ OFFSET	50	WR	nicht flüchtig	RD		
REG_SSI_ MASK	51	WR	nicht flüchtig	RD		
REG	52					
	_					

Bezeichnung		Prozess- ausgabe- schnitt- stelle	Spei- cherung im Modul	Prozess- eingabe- schnitt- stelle	Para- meter- schnitt- stelle	Diag- nose- schnitt- stelle
REG	63					

Nicht flüchtig gespeicherte Register können maximal 100.000 mal beschrieben werden.

Vergleichswert 1, Vergleichswert 2

Die erfasste Geberposition kann mit bis zu zwei ladbaren Werten verglichen werden. Im folgenden steht das Zeichen "x" für "1" bzw. "2". Die Registerinhalte werden über einen Schreibzugriff auf das Register REG_CMPx geladen. Die Vergleichsfunktionen werden durch Setzen des Bits EN CMPx = 1 der Prozessausgabedaten aktiviert. Die Ergebnisse der dann kontinuierlich stattfindenden Vergleiche werden in den Prozesseingabedaten mit STS CMPx, REL CMPx und FLAG CMPx angezeigt. Das Bit REL CMPx zeigt die Beziehung des Istwertes (Registerinhalt von REG SSI POS) zum Vergleichswert (Registerinhalt von REG CMPx) als aktuelle Statusmeldung an. Das Bit STS CMPx meldet aktuelle Gleichheit von Istwert (REG SSI POS) und Vergleichswert (REG CMPx) als flüchtige Statusmeldung. Zudem wird durch FLAG CMPx in Form eines Merkers gemeldet, dass der Zustand (REG SSI POS = REG CMPx) besteht oder durchschritten wurde. Dieses Bit muss seitens der Applikation durch CLR CMPx = 1 über die Prozessausgabedaten zurückgesetzt werden. Wenn der Vergleicher inaktiv ist (EN CMPx = 0), bleiben die Meldungen STS_CMPx, REL_CMPx und FLAG_CMPx auf Null.

Freigabe Vergleicher	Prozesseingabedat	Prozesseingabedaten	
EN_CMPx = 0	REL_CMPx = 0 STS_CMPx = 0 FLAG_CMPx = 0		
EN_CMPx = 1	(REG_SSI_POS) < (REG_CMPx)	$REL_CMPx = 0$ $STS_CMPx = 0$ $FLAG_CMPx = Z_0*$	Rücksetzen des Flags FLAG_CMPx durch CLR_CMPx = 1
	(REG_SSI_POS) > (REG_CMPx)	$REL_CMPx = 1$ $STS_CMPx = 0$ $FLAG_CMPx = Z_0*$	Rücksetzen des Flags FLAG_CMPx durch CLR_CMPx = 1
	(REG_SSI_POS) = (REG_CMPx)	REL_CMPx = 1 STS_CMPx = 1 FLAG_CMPx = 1	Rücksetzen von FLAG_CMPx nicht möglich, solange Gleichheit besteht

 $^{^*}$ Der Wert Z_0 dieses Flags wird 1, sobald Gleichheit der Vergleichswerte besteht. Der Wert bleibt dann 1, bis er zurückgesetzt wird.

Untergrenze, Obergrenze

Die erfasste Geberposition kann mit bis zu zwei ladbaren Grenzen verglichen werden. Durch einen Registerzugriff ist die Obergrenze in das Register REG_UPPER_LIMIT bzw. die Untergrenze in das REG_LOWER_LIMIT einzutragen. Durch Beschreiben dieser Register mit Werten ungleich den Defaults wird die Überwachung der Grenzen aktiviert und die Bits STS_OFLW bzw. STS_UFLW der Prozesseingabedaten werden freigeschaltet. Die Diagnose meldet den Überlauf bzw. den Unterlauf.

Zudem erfolgt mit "Geberwerte Ueberlauf" und "Geberwerte Unterlauf" diese Meldung auch über die azyklische Diagnoseschnittstelle.

Die Grenzwerte sind mit dem Max- bzw. Minimalwert vorgeladen.

Tabelle 1: Überlauf der Geberwerte

Registerzugriff	Prozesseingabedaten		Diagnose
REG_UPPER_ LIMIT auf Default-Wert FFFFFFF _{hex}	STS_OFLW = 0		Wert: 0
Registerinhalt von	(REG_SSI_POS) <= (REG_UPPER_LIMIT)	STS_OFLW = 0	Wert: 0
REG_UPPER_ LIMIT kleiner FFFFFFFF _{hex}	(REG_SSI_POS) > (REG_UPPER_LIMIT)	STS_OFLW = 1	Wert: 1 Text: Geberwerte- Ueberlauf

Tabelle 2: Unterlauf der Geberwerte

Registerzugriff	Prozesseingabedaten	Diagnose	
REG_LOWER_ LIMIT auf Default-Wert 000000000 _{hex}	STS_UFLW = 0		Wert: 0
Registerinhalt von	(REG_SSI_POS) >= (REG_LOWER_LIMIT)	STS_UFLW = 0	Wert: 0
REG_LOWER_ LIMIT größer 0	(REG_SSI_POS) < (REG_LOWER_LIMIT)	STS_UFLW = 1	Wert: 1 Text: Geberwerte- Unterlauf

Offsetfunktion / Ladewert

Diese Funktion wird aktiviert durch Beschreiben des Registers REG_OFFSET mit einem Wert <> 0. Der Inhalt des Registers wird dann von dem SSI-Geberwert subtrahiert und in REG_SSI_POS gespeichert. Alle Grenzwerte wie Untergrenze, Obergrenze, Vergleichswert 1, Vergleichswert 2 beziehen sich dann auf den neu berechneten Wert (REG_SSI_POS).

Die Berechnungsvorschrift hierzu lautet:

(REG_SSI_POS) = SSI-Geberwert - (REG_OFFSET)

Diese Funktion lässt sich durch Schreiben des REG_OFFSET mit Null deaktivieren.

Statusmeldungen des SSI-Gebers

Einige SSI-Geber übertragen in dem Datenrahmen, den sie dem Modul übergeben, nicht ausschließlich den Positionswert, sondern liefern zusätzlich Statusmeldungen. Zur Bewertung des Messwertes seitens der Applikation ist es ggf. sinnvoll, diese Statusmeldungen zu berücksichtigen.

Durch Beschreiben des REG_SSI_MASK lassen sich maximal vier einzelne Bit aus dem Datenrahmen des SSI-Gebers entnehmen und in die Bit SSI_STSx der Prozesseingabedaten kopieren. Zudem kann bei Auslösen einer Statusmeldung mit einer azyklischen Diagnose die Nachricht "SSI Sammeldiagnose" erfolgen.

Tabelle 3: Maskierung durch REG_SSI_MASK

Prozessein- gabedaten	REG_S	SI_MASK							
	Byte	B7	B6	B5	B4	В3	B2	B1	В0
SSI_STS0	0	EN_D0_ RMS0	EN_D0_ DS	X	SSI_	FRAM	E_BIT_	_SEL0	
SSI_STS1	1	EN_D1_ RMS1	EN_D1_ DS	X	SSI_	FRAM	E_BIT_	_SEL1	
SSI_STS2	2	EN_D2_ RMS2	EN_D2_ DS	X	SSI_	FRAM	E_BIT_	SEL2	
SSI_STS3	3	EN_D3_ RMS3	EN_D3_ DS	X	SSI_	FRAM	E_BIT_	_SEL3	

Bezeichnung	Wert	Beschreibung
EN_Dx_RMSx	01)	Der Übertrag der SSI-Statusmeldungen in die Prozesseingabedaten ist nicht aktiviert
	1	Der Übertrag der SSI-Statusmeldungen in die Prozesseingabedaten ist aktiviert
EN_ Dx_DS	01)	Die Auswertung der SSI-Statusmeldungen für Bit 0 der Diagnose ist nicht aktiviert
	1	Die Auswertung der SSI-Statusmeldungen für Bit 0 der Diagnose ist aktiviert.
SSI_FRAME_BIT_S EL	0-31	Angabe des zur Auswertung bzw. zum Kopieren selektierten Bist im Frame des SSI-Gebers. Default:0

1) Default

Es gilt für Bit 0("SSI Sammeldiagnose") der Diagnoseschnittstelle und SSI_DIAG der Prozesseingabedaten:

(SSI_STS0 & EN_D0_DS) || (SSI_STS1 & EN_D1_DS) || (SSI_STS2 & EN_D2_DS) || (SSI_STS3 & EN_D3_DS)

Rücksetzen der Registerbank

Wird das Register REG_SF mit der Signatur:

 $"LD20" = 6C643230_{hex}$

beschrieben, so werden alle Defaultwerte der nicht flüchtigen Register (incl. Parameterregister) zurückgeschrieben.

Wird das Register REG_SF mit der Signatur:

 $"LD48" = 6C643438_{hex}$

beschrieben, so werden alle Defaultwerte der nicht flüchtigen Register außer der Parameterregister zurückgeschrieben.

Überschriebene Werte gehen verloren.

Technische Eigenschaften Prinzipschaltbild XN-1SSI

Abbildung 1: Elektronikmodul XN-1SSI

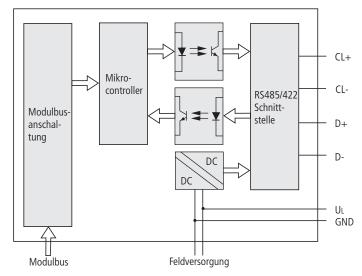


Abbildung 2: Schaltbild XN-1SSI

Technische Daten XN-1SSI

Das Modul verfügt über zwei RS422-Schnittstellen, die ein SSI-Interface bilden. Hierzu arbeitet eine RS422-Schnittstelle als Taktgeber zum Auslesen von Daten, die dann auf der anderen RS422-Schnittstelle empfangen werden.

Tabelle 4: Technische Daten XN-1SSI

Bezeichnung	XN-1SSI
Anzahl der SSI-Schnittstellen	1
Übertragungskanäle	CL, D
Geberspannung	24 V DC (-15% / +20%)
Geberstrom	≦ 500 mA
Ausführung des Taktausgangs	RS422
Ausführung des Signaleingangs	RS422
Verbindungstyp RS422	Vier-Draht-Vollduplex (Taktausgang/Signaleingang)
Bitübertragungsrate	≦ 1 MHz (parametrierbar), Voreinstellung: 500 kBit⁄s
Leitungsimpedanz	120 Ω
Busabschlusswiderstände	intern
RS422 Leitungslänge	≦ 30 m
Nennspannung durch Versorgungsklemme U_{L} (Bereich)	24 V DC (18 bis 30 V DC)
Nennstrom aus Versorgungsklemme I _L	≤ 25 mA (ohne Geberstrom)
Nennstrom aus Modulbus I _{MB}	≦ 50 mA
Verlustleistung des Moduls	typisch 1 W
Isolationsspannung zwischen Schnitt- stelle und Modulbus/Systemspannung	500 V _{eff}
Isolationsspannung zwischen Schnitt- stelle und Feldspannung	500 V _{eff}

1 Produktbeschreibung Technische Eigenschaften

Bezeichnung	XN-1SSI
Elektromagnetische Verträglichkeit (EMV) gemäß IEC/EN 61000-6-2 (Industrie)	
ESD	IEC/EN 61 000-4-2
Elektromagnetische Felder	IEC/EN 61 000-4-3
Burst	IEC/EN 61000-4-4
Surge	IEC/EN 61000-4-5
HF unsymmetrisch	IEC/EN 61000-4-6
Gedämpfte Schwingung	IEC/EN 61000-4-12
Leitungsgebundene Störaussendung/ Störspannung	IEC/EN 61000-6-4
Gestrahlte hochfrequente Störaussen-	IEC/EN 61000-6-4:
dung	IEC/CISPR 11 / EN 55011, Klasse A
Schutzart	IP 20
Umgebung	
Betriebstemperatur	0 bis +55 °C
Lagertemperatur	-25 bis +85 °C
relative Feuchte	15 bis 95 % ohne Betauung

Anzeigeelemente

Tabelle 5: Bedeutung der LED-Anzeige

1SSI	LED	Anzeige	Bedeutung	Abhilfe
■ DIA	DIA	Rot	Ausfall der Modulbus- kommunikation	Prüfen Sie, ob mehr als 2 benachbarte Elektronikmodule gezogen wurden. Relevant sind Module, die sich zwischen Gateway und diesem Modul befinden. Prüfen Sie die Versorgung des Modulbusses. Prüfen Sie auch, ob der SSI-Geber voll funktionsfähig ist und die Datenleitungsprüfung in der erforderlichen Weise unterstützt.
or a six		AUS	Keine Fehlermeldung oder Diagnose	_
	UP	Grün	Bewegungsrichtung aufwärts	_
	-	AUS	Keine Bewegungsrichtung aufwärts	-
	DN	Grün	Bewegungsrichtung abwärts	-
	-	AUS	Keine Bewegungsrich-	-

tung abwärts

1 Produktbeschreibung Basismodule

Basismodule

Als Anschlussebene für das Produkt XN-1SSI können folgende Basismodule verwendet werden:

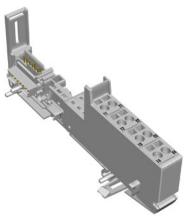


Abbildung 3: Basismodul XN-S4x-SBBS

Bezeichnung	
mit Zugfederanschluss	XN-S4T-SBBS
mit Schraubanschluss	XN-S4S-SBBS

Technische Daten der Basismodule

Tabelle 6: Technische Daten der Basismodule

Bezeichnung	Wert
Bemessungsdaten	nach VDE 0611 Teil 1/8.92 / IEC/EN 60947-7-1
Bemessungsspannung	250 V
Bemessungsstrom	17,5 A
Bemessungsquerschnitt	1,5 mm ²
Bemessungsstoßspannung	4 kV
Verschmutzungsgrad	2
Anschlusstechnik in TOP-Richtung	Zugfederanschluss oder Schraubanschluss
Schutzart	IP20
Abisolierlänge	8,0 bis 9,0 mm
max. Klemmbereich	0,5 bis 2,5 mm ²
klemmbare Leiter	
"e" eindrähtig H 07V-U	0,5 bis 2,5 mm ²
"f" feindrähtig H 07V-K	0,5 bis 1,5 mm ²
"f" mit Aderendhülsen nach DIN 46228-1 (Aderendhülsen gasdicht aufgecrimpt)	0,5 bis 1,5 mm ²
Lehrdorn nach IEC/EN 60947-1	A1

1 Produktbeschreibung Basismodule

Anschlussbild SSI-Geber

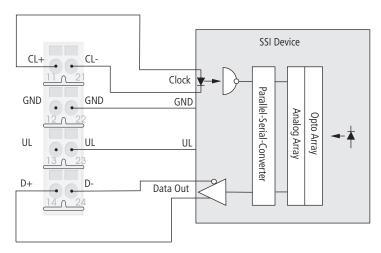


Abbildung 4: Anschlussbild XN-S4x-SBBS an einen SSI-Drehgeber

Tabelle 7: Signaltypen

Signalbezeichnung				
CL	Clock	Takt		
D	Data	Daten		
GND	Ground	Signalmasse		
UL		Spannung		

2 Integration des Moduls in PROFIBUS-DP

Datenabbild unter PROFIBUS-DP

Prozesseingabe

Die Feldeingabedaten werden vom angeschlossenen Feldgerät an das XN-1SSI Modul übertragen.

Die Prozesseingabedaten beschreiben die Daten, die vom XN-1SSI-Modul über ein Gateway zur SPS übertragen werden.

Die Übertragung erfolgt in einem 8 Byte-Format, das sich wie folgt darstellt:

- 4 Byte dienen zur Darstellung der Daten, die aus dem Register mit der Adresse REG_RD_ADR gelesen wurden.
- 1 Byte gibt ggf. die Registeradresse zu den gelesenen Daten und eine Bestätigung für die erfolgreiche Durchführung wieder.
- 1 Byte kann Statusmeldungen des SSI-Gebers übertragen. Weiterhin enthält dieses Byte ggf. eine Bestätigung für das erfolgreiche Beschreiben des Registers und eine Meldung zu einem aktivem Schreibvorgang.
- 1 Byte gibt die Ergebnisse zu Vergleichsoperationen mit dem SSI-Geberwert wieder.
- 1 Byte gibt Meldungen zum Kommunikationsstatus zwischen XN-1SSI-Modul und SSI-Geber sowie weitere Ergebnisse zu Vergleichsoperationen wieder

2 Integration des Moduls in PROFIBUS-DP Datenabbild unter PROFIBUS-DP

Folgende Darstellung beschreibt den Aufbau der 8 x 8 Bit der Prozesseingabedaten.

STS (bzw.ERR) beinhaltet eine flüchtige Statusinformation, d.h. das entsprechende Bit spiegelt immer den aktuellen Zustand wieder.

FLAG beschreibt einen nichtflüchtigen Merker, der gesetzt wird, wenn ein bestimmtes Ereignis eingetreten ist. Das entsprechende Bit behält den Wert, bis es wieder zurückgesetzt wird.

Aufbau der Datenbytes im PROFIBUS-DP-Feldbus:

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Byte 0	REG_RD_	_DATA, B	yte 3					
Byte 3	REG_RD_	_DATA, B	yte 0					
Byte 4	REG_ RD_ ABORT	X	REG_R	D_ADR (M	ISB bis LS	SB)		
Byte 5	REG_ WR_ ACEPT	REG_ WR_ AKN	X	X	SSI_ STS3	SSI_ STS2	SSI_ STS1	SSI_ STS0
Byte 6	STS_ UP	STS_ DN	REL_ CMP2	FLAG_ CMP2	STS_ CMP2	REL_ CMP1	FLAG_ CMP1	STS_ CMP1
Byte 7	STS_ STOP	X	X	ERR_ PARA	STS_ UFLW	STS_ OFLW	ERR_ SSI	SSI_ DIAG

X = reserviert

Aussage der Datenbits (Prozesseingabedaten):

Bezeichnung	Wert	Beschreibung
REG_RD_DATA	0 2 ³² -1	Inhalt des Registers, das gelesen werden soll, falls REG_RD_ABORT = 0. Falls REG_RD_ABORT = 1, ist REG_RD_DATA = 0.
REG_RD_ABORT	0	Das Lesen des in REG_RD_ADR angegeben Registers wurde akzeptiert und durchgeführt. Der Inhalt des Registers befindet sich im Nutzdatenbereich (REG_RD_DATA Byte 0-3).
	1	Das Lesen des in REG_RD_ADR angegeben Registers wurde nicht akzeptiert. Der Nutzdatenbereich (REG_RD_DATA Byte 0-3) ist Null.
REG_RD_ADR	063	Adresse des Registers, dessen Inhalt bei REG_RD_ABORT = 0 im Nutzdatenbereich (REG_RD_DATA Byte 0-3) der Prozesseingabe- daten angegeben wird.
REG_WR_ACEPT	0	Das Beschreiben des in den Prozessausgabedaten mit REG_WR_ADR adressierten Registers mit den Nutzdaten der Prozessausgabe konnte nicht durchgeführt werden.
	1	Das Beschreiben des in den Prozessausgabedaten mit REG_WR_ADR adressierten Registers mit den Nutzdaten der Prozessausgabe wurde erfolgreich durchgeführt.
REG_WR_AKN	0	Kein Änderungsauftrag der Daten in der Registerbank durch Prozessausgabe, d.h. REG_WR = 0 → Kapitel "Prozessausgabe". Ein Schreibauftrag würde mit dem nächsten Telegramm der Prozessausgabedaten angenommen. (Handshake zur Datenübertragung in die Register.)
	1	Es wurde eine Änderung der Registerinhalte durch eine Prozessausgabe beauftragt, d.h. REG_WR = 1 → Kapitel "Prozessausgabe". Ein Schreibauftrag würde mit dem nächsten Tele- gramm der Prozessausgabedaten nicht ange- nommen.

2 Integration des Moduls in PROFIBUS-DP Datenabbild unter PROFIBUS-DP

Bezeichnung	Wert	Beschreibung
SSI_STS3	0	Diese vier Bits geben Statusbits vom SSI-Geber
	1	mit den Statusmeldungen des SSI-Moduls weiter. Die Statusbits werden bei einigen SSI-Gebern
SSI_STS2	0	gemeinsam mit dem Positionswert übertragen.
	1	
SSI_STS1	0	
	1	
SSI_STS0	0	
	1	
STS_UP (LED UP)	0	Die SSI-Geberwerte verändern sich in Richtung kleinere Werte oder die Werte sind konstant.
	1	Die SSI-Geberwerte verändern sich in Richtung größere Werte.
STS_DN (LED DN)	0	Die SSI-Geberwerte verändern sich in Richtung größere Werte oder die Werte sind konstant.
	1	Die SSI-Geberwerte verändern sich in Richtung kleinere Werte.
REL_CMP2	0	Ein Vergleich der Registerinhalte hat ergeben: (REG_SSI_POS) < (REG_CMP2)
	1	Ein Vergleich der Registerinhalte hat ergeben: (REG_SSI_POS) ≧ (REG_CMP2)
FLAG_CMP2	0	Grundzustand, d.h. der Gleichstand der Registerinhalte (REG_SSI_POS) = (REG_CMP2) hat nach dem letzten Rücksetzen noch nicht stattgefunden.
	1	Der Gleichstand der Registerinhalte (REG_SSI_POS) = (REG_CMP2) hat stattgefunden. Dieser Merker muss mit dem Bit CLR_CMP2 = 1 der Prozessausgabedaten zurückgesetzt werden.
STS_CMP2	0	Ein Vergleich der Registerinhalte hat ergeben: (REG_SSI_POS) k (REG_CMP2)
	1	Ein Vergleich der Registerinhalte hat ergeben: (REG_ SSI_POS) = (REG_CMP2)

Bezeichnung	Wert	Beschreibung
REL_CMP1	0	Ein Vergleich der Registerinhalte hat ergeben: (REG_SSI_POS) < (REG_CMP1)
	1	Ein Vergleich der Registerinhalte hat ergeben: (REG_ SSI_POS) ≧ (REG_CMP1)
FLAG_CMP1	0	Grundzustand, d.h. der Gleichstand der Registerinhalte (REG_SSI_POS) = (REG_CMP1) hat nach dem letzten Rücksetzen noch nicht stattgefunden.
	1	Der Gleichstand der Registerinhalte (REG_SSI_POS) = (REG_CMP1) hat stattgefunden. Dieser Merker muss mit dem Bit CLR_CMP1 = 1 der Prozessausgabedaten zurückgesetzt werden.
STS_CMP1	0	Ein Vergleich der Registerinhalte hat ergeben: (REG_SSI_POS) k (REG_CMP1)
	1	Ein Vergleich der Registerinhalte hat ergeben: (REG_ SSI_POS) = (REG_CMP1)
STS_STOP	0	Der SSI-Geber wird zyklisch ausgelesen.
	1	Die Kommunikation mit dem SSI-Geber ist gestoppt, da STOP = 1 (Prozessausgabe) oder ERR_PARA = 1.
ERR_PARA	0	Der Parametersatz des Moduls ist akzeptiert.
	1	Gemäß des vorhandenen Parametersatzes ist der Betrieb des Moduls nicht möglich.
STS_UFLW	0	Ein Vergleich der Registerinhalte hat ergeben: (REG_SSI_POS) ≧ (REG_LOWER_LIMIT)
	1	Ein Vergleich der Registerinhalte hat ergeben: (REG_SSI_POS) < (REG_LOWER_LIMIT)
STS_OFLW	0	Ein Vergleich der Registerinhalte hat ergeben: (REG_SSI_POS) ≦ (REG_UPPER_LIMIT)
	1	Ein Vergleich der Registerinhalte hat ergeben: (REG_SSI_POS) > (REG_UPPER_LIMIT)
ERR_SSI	0	SSI-Gebersignal vorhanden.
	1	SSI-Gebersignal fehlerhaft. (z.B. bedingt durch einen Leitungsbruch).

Bezeichnung	Wert	Beschreibung
SSI_DIAG	0	Es ist kein freigegebenes Statussignal aktiv (SSI_STSx = 0).
	1	Mindestens ein freigegebenes Statussignal ist aktiv (SSI_STSx = 1)

Prozessausgabe

Feldausgabedaten werden vom XN-1SSI-Modul an ein Feldgerät ausgegeben.

Die Prozessausgabedaten beschreiben die Daten, die von der SPS über ein Gateway an das XN-1SSI-Modul ausgegeben werden.

Die Übertragung erfolgt in einem 8 Byte-Format, das sich wie folgt darstellt:

- 4 Byte dienen zur Darstellung der Daten, die in das Register mit der Adresse REG_WR_DATA geschrieben werden sollen.
- 1 Byte enthält die Registeradresse zu den Daten, die mit dem nächsten Rückmeldetelegramm ausgelesen werden sollen.
- 1 Byte enthält die Registeradresse zu den Daten, die in Byte 0 bis 3 dieses Telegramms stehen und eine Anforderung zum Schreiben.
- 1 Byte dient zum Steuern der Vergleichsoperationen.
- 1 Byte enthält ein Stoppbit zur Unterbrechung der Kommunikation mit dem Geber.

Aufbau der Datenbytes (Prozessausgabedaten):

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Byte 0	REG_WR	_DATA, E	Syte 3					
Byte 3	REG_WR	_DATA, E	Syte 0					
Byte 4	Χ	X	REG_RI	D_ADR				
Byte 5	REG_ WR	X	REG_W	/R_ADR				
Byte 6	X	X	X	CLR_ CMP2	EN_ CMP2	X	CLR_ CMP1	EN_ CMP1
Byte 7	STOP	X	Χ	X	Χ	Χ	Χ	X

X = reserviert

Aussage der Datenbits (Prozessausgabedaten):

Bezeichnung	Wert	Beschreibung
REG_WR_DATA	0 2 ³² -1	Wert, der in das Register mit der Adresse REG_WR_ADR geschrieben werden soll.
REG_RD_ADR	063	Adresse des Registers, das gelesen werden soll. Die Nutzdaten befinden sich bei erfolgreichem Lesen (REG_RD_ABORT = 0) in REG_RD_DATA der Prozesseingabedaten (Bytes 4 – 7).
REG_WR	0	Grundzustand, d.h. es liegt keine Anforderung, den Inhalt des Registers zur Adresse REG_WR_ADR mit REG_WR_DATA zu über- schreiben, an. Das Bit REG_WR_AKN (→ Kapitel "Prozesseingabe") wird ggf. zurückgesetzt (0).
	1	Anforderung den Inhalt des Registers zur Adresse REG_WR_ADR mit REG_WR_DATA zu überschreiben.
REG_WR_ADR	063	Adresse des Registers, das mit REG_WR_DATA beschrieben werden soll.

Bezeichnung	Wert	Beschreibung
CLR_CMP2	0	Grundzustand, d.h. kein Rücksetzen von FLAG_CMP2 aktiv.
	1	Rücksetzen von FLAG_CMP2 aktiv
EN_CMP2	0	Grundzustand, d.h. die Datenbits REL_CMP2, STS_CMP2 und FLAG_CMP2 haben immer den Wert 0, unabhängig vom SSI-Geberwert.
	1	Vergleich aktiv, d.h. die Datenbits REL_CMP2, STS_CMP2 und FLAG_CMP2 haben einen Wert abhängig vom Vergleichsergebnis zum SSI-Geberwert.
CLR_CMP1	0	Grundzustand, d.h. Rücksetzen von FLAG_CMP1 nicht aktiv.
	1	Rücksetzen von FLAG_CMP1 aktiv.
EN_CMP1	0	Grundzustand, d.h. die Datenbits REL_CMP1, STS_CMP1 und FLAG_CMP1 haben immer den Wert 0, unabhängig vom SSI-Geberwert.
	1	Vergleich aktiv, d.h. die Datenbits REL_CMP1, STS_CMP1 und FLAG_CMP1 haben einen Wert abhängig vom Vergleichsergebnis zum SSI-Geberwert.
STOP	0	Anforderung, den SSI-Geber zyklisch auszulesen
	1	Anforderung, die Kommunikation mit dem Geber zu unterbrechen.

Diagnose

Bei der Parametrierung des PROFIBUS-DP Gateways kann über den Parameter "Gateway Diagnose" zwischen zwei Einstellungen zur Diagnosedarstellung gewählt werden. Mit "Geraete, Kennung, Kanal-Diagnose" wird eine ausführliche Diagnosedarstellung angewählt. Die Diagnosemeldung besteht dann aus:

- 2 Byte Gateway-Diagnose (gerätebebezogene Diagnose)
- 64 Bit kennungsspezifische Diagnose
- n x 3 Byte kanalspezifische Diagnose (n: Anzahl der Kanäle mit aktiver Diagnose)

Die kanalspezifische Diagnosedarstellung ermöglicht über eine Fehlernummer die Bezeichnung des Fehlertyps als Text (z.B. "Parametrierungsfehler").

Mit Anwahl "Geraetebez. Diagnose" wird eine verkürzte Diagnosedarstellung generiert, die lediglich die Gateway-Diagnose (gerätebezogene Diagnose) darstellt. Angehängt sind die Diagnosebytes aller diagnosefähigen Module der Station.

Aussage der Datenbits (Diagnose):

Bezeichnung des Fehlertyps	Position (Typ2)	Wert	Beschreibung
SSI Sammeldiag- nose	Bit 0	0	Es ist kein freigegebenes Statussignal aktiv: SSI_STSx = 0 oder es liegen keine Statusmeldungen vom SSI-Geber vor.
		1	Mindestens ein freigegebenes Statussignal ist aktiv: SSI_STSx = 1.
Drahtbruch	Bit 1	0	SSI-Gebersignal vorhanden.
		1	SSI-Gebersignal fehlerhaft (z.B. bedingt durch einen Leitungsbruch).
Geberwerte-Ueber- lauf	Bit 2	0	SSI-Geberwert ist unterhalb / gleich der Obergrenze.
		1	SSI-Geberwert ist oberhalb der Obergrenze. Es ist ein Überlauf aufgetreten.
Geberwerte-Unter- lauf	Bit 3	0	SSI-Geberwert ist oberhalb / gleich der Untergrenze.
		1	SSI-Geberwert ist unterhalb der Untergrenze. Es ist ein Unterlauf aufgetreten.
Parametrierungs- fehler	Bit 4	0	Der Parametersatz des Moduls ist akzeptiert.
		1	Gemäß des vorhandenen Para- metersatzes ist der Betrieb des Moduls nicht möglich.

Parameter

Parameter sind Daten, die dem Modul zum applikationsgerechten Betrieb mitgeteilt werden müssen, um es funktionsfähig zu machen.

Aussage der Datenbits (Parameter):

Bezeichnung	Wert	Bezeich- nung der Werte	Beschreibung
Geber-Datenleitungs- Pruefung	0 ¹⁾	aktivieren	Datenleitung wird auf NULL überprüft.
	1	deaktivieren	Nach dem letzten gültigen Bit wird nicht geprüft, ob die Daten- leitung NULL liefert.
Anzahl ungueltiger Bit (LSB)	0 bis 15	"0" bis "15"	Anzahl ungültiger Bits des vom SSI-Geber gelieferten Positionswertes an der LSB Seite. Die signifikante Wortbreite des an den Modulbus-Master übertragenen Positionswertes ist folglich: ²⁾ SSI_FRAME_LEN - INVALID_BITS_MSB-INVALID_BITS_LSB. Die ungültigen Bits LSB-seitig werden durch Rechtsschieben des Positionswertes, beginnend mit dem LSB, entfernt. (Default 0 Bit = 0x 0). Grundsätzlich muss INVALID_BITS_MSB + INVALID_BITS_LSB kleiner sein als SSI_FRAME_LEN.

Bezeichnung	Wert	Bezeich- nung der Werte	Beschreibung
Anzahl ungueltiger Bit (MSB)	0 bis 7	"0" bis "7"	Anzahl ungültiger Bits des vom SSI-Geber gelieferten Positionswertes an der MSB Seite. Die signifikante Wortbreite des an den Modulbus-Master übertragenen Positionswertes ist folglich: ²⁾ SSI_FRAME_LEN - INVALID_BITS_MSB - INVALID_BITS_LSB. Die ungültigen Bits MSB-seitig werden durch Maskierung des Positionswertes auf Null gesetzt. Grundsätzlich muss INVALID_BITS_MSB + INVALID_BITS_LSB kleiner sein als SSI_FRAME_LEN. Default: 0 = 0hex
Bituebertragungsrate	0	1000000 Bit/s	
	1 ¹⁾	500000 Bit/s	
	2	250000 Bit/s	
	3	125000 Bit/s	
	4	100000 Bit/s	
	5	83000 Bit/s	
	6	71000 Bit/s	
	7	62500 Bit/s	
	8 bis 15		Reserve
Anzahl Datenrahmenbits	1 bis 32	"1" bis "32"	Anzahl der Bits des SSI-Daten- Frames. Grundsätzlich muss ²⁾ SSI_FRAME_LEN größer sein als INVALID_BITS. Default: 25 = 19 _{hex}

Bezeichnung	Wert	Bezeich- nung der Werte	Beschreibung
Datenformat	01)	binaer kodiert	SSI-Geber sendet Daten im Binär-Code
	1	GRAY kodiert	SSI-Geber sendet Daten im Gray- Code

- 1) Default
- SSI_FRAME_LEN: Anzahl Datenrahmenbits INVALID_BITS_MSB: Anzahl ungueltiger Bits(MSB) INVALID_BITS_LSB: Anzahl ungueltiger Bits(LSB) INVALID_BITS: INVALID_BITS_MSB + INVALID_BITS_LSB

Fehlererkennung / Meldungen

Zusammenfassend werden folgende Fehler und Diagnosen vom Modul gemeldet:

Diagnose	Prozess- eingabedaten	Bemerkung
SSI Sammeldiag- nose	SSI_DIAG	Mindestens eine freigegebene Statusmeldung ist aktiv.
Drahtbruch	ERR_SSI	Flüchtige Fehlermeldung, dass ein Fehler in der Schnittstelle detek- tiert wird (z.B. Leitungsbruch).
Geberwerte-Ueber- lauf	STS_OFLW	Flüchtige Fehlermeldung durch Überschreiten der Obergrenze.
Geberwerte-Unter- lauf	STS_UFLW	Flüchtige Fehlermeldung durch Unterschreiten der Untergrenze.
Parametrierungs- fehler	ERR_PARA	Flüchtige Fehlermeldung bei fehlerhaftem und damit nicht akzeptiertem Parametersatz.
	STS_STOP	Flüchtige Statusmeldung über den Betriebszustand Stopp / Go des SSI-Moduls.
	STS_CMP1	Flüchtige Statusmeldung über die Relation (k oder=) des SSI-Geber- wertes zum Vergleichswert 1.
	FLAG_CMP1	Nicht flüchtiger Merker für SSI- Geberwert = Vergleichswert 1.
	REL_CMP1	Flüchtige Statusmeldung über die Relation (f oder <) des SSI-Geber- wertes zum Vergleichswert 1.
	STS_CMP2	Flüchtige Statusmeldung über die Relation (k oder=) des SSI-Geber- wertes zum Vergleichswert 2.
	FLAG_CMP2	Nicht flüchtiger Merker für SSI- Geberwert = Vergleichswert 2.
	REL_CMP2	Flüchtige Statusmeldung über die Relation (f oder <) des SSI-Geberwertes zum Vergleichswert 2.

Diagnose	Prozess- eingabedaten	Bemerkung
	STS_DN	Flüchtige Statusmeldung zur Bewegungsrichtung des SSI- Gebers.
	STS_UP	Flüchtige Statusmeldung zur Bewegungsrichtung des SSI_Gebers.

Funktionsbaustein für SIMATIC S7

Der Funktionsbaustein, der für das SPS - System SIMATIC S7 (Fa. Siemens) erstellt worden ist, ermöglicht den Datenbyteaustausch zwischen SPS und dem XN-1SSI-Modul, insbesondere den Zugriff auf die Registerschnittstelle.

Es werden für den konsistenten Datenaustausch der Systemfunktionsbaustein SFC14 und SFC15 von der Fa. Siemens verwendet. Die Rückgabewerte werden transparent zurückgegeben, die Bedeutung der Fehlernummern sind dem Handbuch "Systemsoftware für S7-300/400"zu entnehmen.

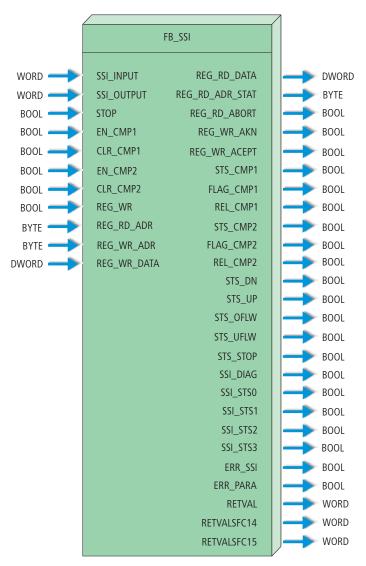


Abbildung 5: Funktionsbaustein zum Datenaustausch zur Software SIMATIC S7

Tabelle 8: Eingangsvariablen des FB_SSI

Variable	Bedeutung
SSI_INPUT	Anfangsadresse zum 8 Byte Eingangsadressbereich des XN-1SSI-Moduls. Die Software SIMATIC STEP 7 ordnet die Adressbereiche den Modulen zu. Im Hardware-Konfigurator der Software werden die Adressbereiche gewählt und angezeigt. Das Format der Adressen ist WORD und umfasst damit 2 Byte. Beispiel: Die dezimale Zahl 258 muss im hexadezimalen Code mit W#16#102 übergeben werden.
SSI_OUTPUT	Anfangsadresse zum 8 Byte Ausgangsadressbereich des XN-1SSI-Moduls. Die Software SIMATIC STEP 7 ordnet die Adressbereiche den Modulen zu. Im Hardware-Konfigurator der Software werden die Adressbereiche gewählt und angezeigt. Das Format der Adressen ist WORD und umfasst damit 2 Byte. Beispiel: Die dezimale Zahl 258 muss im hexadezimalen Code mit W#16#102 übergeben werden.
STOP	0: Anforderung, den SSI-Geber zyklisch auszulesen 1: Anforderung, die Kommunikation mit dem Geber zu unterbrechen.
EN_CMP1	0: Grundzustand, d.h. die Datenbits REL_CMP1, STS_CMP1 und FLAG_CMP1 haben immer den Wert 0, unabhängig vom SSI-Geberwert. 1: Vergleich aktiv, d.h. die Datenbits REL_CMP1, STS_CMP1 und FLAG_CMP1 haben einen Wert abhängig vom Vergleichsergebnis zum SSI-Geberwert.
CLR_CMP1	0: Grundzustand, d.h. Rücksetzen von FLAG_CMP1 nicht aktiv. 1: Rücksetzen von FLAG_CMP1 aktiv.

Variable	Bedeutung	
EN_CMP2	0: Grundzustand, d.h. die Datenbits REL_CMP2, STS_CMP2 und FLAG_CMP2 haben immer den Wert 0, unabhängig vom SSI-Geberwert. 1: Vergleich aktiv, d.h. die Datenbits REL_CMP2, STS_CMP2 und FLAG_CMP2 haben einen Wert abhängig vom Vergleichsergebnis zum SSI-Geberwert.	
CLR_CMP2	0: Grundzustand, d.h. Rücksetzen von FLAG_CMP2 nicht aktiv.1: Rücksetzen von FLAG_CMP2 aktiv.	
REG_WR	0: Grundzustand, d.h. es liegt keine Anforderung, den Inhalt des Registers zur Adresse REG_WR_ADR mit REG_WR_DATA zu überschreiben, an. Das Bit REG_WR_AKN (Ausgangsvariable) wird von 1 auf 0 zurückgesetzt. 1: Anforderung den Inhalt des Registers zur Adresse REG_WR_ADR mit REG_WR_DATA zu überschreiben.	
REG_RD_ADR	Adresse des Registers, das gelesen werden soll.	
REG_WR_ADR	Adresse des Registers, das mit REG_WR_DATA beschrieben werden soll.	
REG_WR_DATA	Wert, der in das Register mit der Adresse REG_WR_ADR geschrieben werden soll.	

Tabelle 9: Ausgangsvariablen des FB_SSI

Variable	Bedeutung			
REG_RD_DATA	Lesedaten zur Registeradresse REG_RD_ADR, bei erfolgreichem Zugriff (REG_RD_ABORT = 0).			
REG_RD_ADR_STAT	Rücksendung der Registeradresse zu den Lesedaten REG_RD_DATA.			
REG_RD_ABORT	1: Das Lesen des Registers mit der Adresse REG_RD_ADR konnte nicht erfolgreich durchgeführt werden. Der Vorgang wurde abgebrochen. 0: Das Lesen des Registers mit der Adresse REG_RD_ADR war erfolgreich. Die Lesedaten werder mit REG_RD_DATA dargestellt.			
REG_WR_AKN	1: Das Beschreiben des Registers wurde mit REG_WR = 1 im vorausgehenden Zyklus angefordert. Eine weitere Schreibaufforderung mit REG_WR = 1 wird nicht angenommen. Mit REG_WR = 0 wechselt dieser Wert wieder auf 0. 0: Eine Schreibaufforderung mit REG_WR = 1 wird angenommen. Dieser Wert wechselt dann auf 1. Weitere Schreibaufforderung werden ignoriert.			
REG_WR_ACEPT	1: Das Beschreiben des Registers mit der Adresse REG_WR_ADR war erfolgreich. 0: Das Beschreiben des Registers mit der Adresse REG_WR_ADR war nicht erfolgreich.			
STS_CMP1	0: Ein Vergleich der Registerinhalte hat ergeben: (REG_SSI_POS) k (REG_CMP1) 1: Ein Vergleich der Registerinhalte hat ergeben: (REG_ SSI_POS) = (REG_CMP1)			
FLAG_CMP1	0: Grundzustand, d.h. der Gleichstand der Registerinhalte (REG_SSI_POS) = (REG_CMP1) hat nach dem letzten Rücksetzen noch nicht stattgefunden. 1: Der Gleichstand der Registerinhalte (REG_SSI_POS) = (REG_CMP1) hat stattgefunden. Dieser Merker muss mit dem Bit CLR_CMP1 = 1 zurückgesetzt werden.			
REL_CMP1	0: Ein Vergleich der Registerinhalte hat ergeben: (REG_SSI_POS) < (REG_CMP1) 1: Ein Vergleich der Registerinhalte hat ergeben: (REG_ SSI_POS) ≧ (REG_CMP1)			

Variable	Bedeutung					
STS_CMP2	0: Ein Vergleich der Registerinhalte hat ergeben: (REG_SSI_POS) k (REG_CMP2) 1: Ein Vergleich der Registerinhalte hat ergeben: (REG_ SSI_POS) = (REG_CMP2)					
FLAG_CMP2	 0: Grundzustand, d.h. der Gleichstand der Registerinhalte (REG_SSI_POS) = (REG_CMP2) hat nach dem letzten Rücksetzen noch nicht stattgefunden. 1: Der Gleichstand der Registerinhalte (REG_SSI_POS) = (REG_CMP2) hat stattgefunden. Dieser Merker muss mit dem Bit CLR_CMP2 = 1 zurückgesetzt werden. 					
REL_CMP2	0: Ein Vergleich der Registerinhalte hat ergeben: (REG_SSI_POS) < (REG_CMP2) 1: Ein Vergleich der Registerinhalte hat ergeben: (REG_SSI_POS) ≧ (REG_CMP2)					
STS_UP	0: Die SSI-Geberwerte verändern sich in Richtung kleinere Werte oder die SSI-Geberwerte sind konstant. 1: Die SSI-Geberwerte verändern sich in Richtung größere Werte.					
STS_DN	0: Die SSI-Geberwerte verändern sich in Richtung größere Werte oder die SSI-Geberwerte sind konstant. Ist zugleich STS_DN = 0 steht der SSI-Geber. 1: Die SSI-Geberwerte verändern sich in Richtung kleinere Werte.					
STS_OFLW	0: Ein Vergleich der Registerinhalte hat ergeben: (REG_SSI_POS) ≤ (REG_UPPER_LIMIT) 1: Ein Vergleich der Registerinhalte hat ergeben: (REG_SSI_POS) > (REG_UPPER_LIMIT)					
STS_UFLW	0: Ein Vergleich der Registerinhalte hat ergeben: (REG_SSI_POS) ≧ (REG_LOWER_LIMIT) 1: Ein Vergleich der Registerinhalte hat ergeben: (REG_SSI_POS) < (REG_LOWER_LIMIT)					
STS_STOP	O: Der SSI Geber wird zyklisch ausgelesen. 1: Die Kommunikation mit dem SSI-Geber ist gestoppt, da STOP = 1.					

Variable	Bedeutung
SSI_DIAG	0: Es ist kein freigegebenes Statussignal aktiv: SSI_STSx = 0 oder es liegen keine Statusmeldungen vom SSI-Geber vor. 1: Mindestens ein freigegebenes Statussignal ist aktiv: SSI_STSx = 1
SSI_STS0	Diese vier Bits geben Statusbits vom SSI-Gebers mit
SSI_STS1	den Statusmeldungen des SSI-Moduls weiter. Die Statusbits werden bei einigen SSI-Gebern gemeinsam
SSI_STS2	mit dem Positionswert übertragen.
SSI_STS3	
ERR_SSI	0: SSI-Gebersignal vorhanden. 1: SSI-Gebersignal fehlerhaft. (z.B. bedingt durch einen Leitungsbruch)
ERR_PARA	0: Der Parametersatz des Moduls ist akzeptiert. 1: Gemäß des vorhandenen Parametersatzes ist der Betrieb des Moduls nicht möglich.
RETVAL	Rückgabewert der Funktion (Status bzw. Fehlercode) 0: Alles in Ordnung. Kein Fehler 8xxxh:Fehler Formaloperanden
RETVALSFC14	siehe Handbuch "Systemsoftware für S7-300/400, SFC14"
RETVALSFC15	siehe Handbuch "Systemsoftware für S7-300/400, SFC15"

3 Integration des Moduls in DeviceNet

Prozessabbild

Der Aufbau des Prozessabbildes ist mit symbolischen Namen dargestellt. Diese entsprechen den Attributnamen, da sich auch die Funktionalität im Wesentlichen entspricht.

Die zu den Namen gehörenden Bit bzw. Bit-Gruppen geben Zahlenwerte wieder.

Die Bedeutung der Zahlenwerte wird mit der Beschreibung der Attribute erläutert.

Tabelle 10: Prozesseingabe

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Byte 0	DIAGNOSTICS AND STATUS							
Byte 1								
Byte 2	RESULT V OPERATIO		X	X	SSI_ STS3	SSI_ STS2	SSI_ STS1	SSI_ STS0
Byte 3	RESULT READ OPERA- TION	X ADDRESS READ REGISTER						
Byte 4	VALUE READ REGISTER Byte 0							
Byte 7	VALUE RE	AD REGIST	TER Byte	3				

X = reserviert

1) Statusbits vom SSI-Geber

3 Integration des Moduls in DeviceNet Prozessabbild

Tabelle 11: Aussage der Datenbits 0 bis 3 (Byte 2)

SSI_STS3	0	Diese vier Bits geben
	1	Statusbits vom SSI- Geber mit den Status-
SSI_STS2	0	meldungen des SSI-
	1	Moduls weiter. Die
SSI_STS1	0	Statusbits werden bei einigen SSI-Gebern
	1	gemeinsam mit dem
SSI_STS0	0	Positionswert übertragen.
	1	

Tabelle 12: Prozessausgabe

	Bit 7	Bit 6	D:4 E	D:4 4	D:+ 2	Bit 2	D:4 1	D:+ 0
	BIT /	BIT 6	Bit 5	Bit 4	Bit 3	BIT Z	Bit 1	Bit 0
Byte 0	CONTROL	-						
Byte 1								
Byte 2	X	X	ADDRE	SS READ	REGISTE	R		
Byte 3	WRITE OPERA- TION	X	ADDRE	SS WRIT	E REGIST	ER		
Byte 4	VALUE WRITE REGISTER, Byte 0							
Byte 7	VALUE W	RITE REGIS	STER, By	rte 3				

X = reserviert

SSI Module CLass (VSC116) Diese Klasse beinhaltet alle das XN-1SSI-Modul betreffenden Parameter und Informationen.

Tabelle 13: Class Instance

Attr. Nr.	Attribut- Name	Zugriff	Тур	Beschreibung
dez. (hex.)				
100 (64h)	CLASS REVISION	G	UINT	Enthält die Revisionsnummer dieser Klasse (MajRel. x 1000 + MinRel.).
101 (65h)	MAX INSTANCE	G	USINT	Enthält die Nummer der höchsten Instanz eines auf diesem Level in der Klassenhierarchie erstellten Objekts.
102 (66h)	# OF INSTANCES	G	USINT	Enthält die Anzahl der auf diesem Klassenlevel erstellten Objekt Instanzen.
103 (67h)	MAX CLASS ATTR	G	USINT	Enthält die Nummer des letzten implementierten Klassenattributes.

Tabelle 14: Objekt Instanzen

Attr. Nr.	Attribut- Name	Zugriff	Тур	Beschreibung
dez. (hex.)				
100 (64 _{hex})	MAX OBJECT ATTRIBUTE	G	USINT	Enthält die Nummer des letzten implementierten Objektattributes.
101 (65 _{hex})	MODULE PRESENT	G	BOOL	0: XI/ON Modul ist nicht gesteckt, leeres Basismodul. 1: XI/ON Modul ist gesteckt.
102 (66 _{hex})	TERMINAL SLOT NUMBER	G	USINT	Die Steckplatznummer des zu dem Modul gehörenden Basismoduls (Basismodul rechts neben dem Gateway = Nr. 1). Entspricht der jeweiligen Instanznummer innerhalb der TERMINAL SLOT CLASS.
103 (67 _{hex})	MODULE ID	G	DWORD	Enthält die Modul ID.
104 (68 _{hex})	MODULE ORDER NUMBER	G	UDINT	Beinhaltet die Bestellnummer des Moduls.
105 (69 _{hex})	MODULE ORDER NAME	G	SHORT_ STRING	Enthält den Modulnamen, z. B. "XN-1RS485/422".
106 (6A _{hex})	MODULE REVISION NUMBER	G	USINT	Beinhaltet die Revisionsnummer der Modul-Firmware.

Attr. Nr.	Attribut- Name	Zugriff	Тур	Beschreibung
dez. (hex.)				
107 (6B _{hex})	MODULE TYPE ID	G	ENUM USINT	Gibt Informationen über den Modultyp: 0 (00 _{hex}) unbekannter Modultyp 1 (01 _{hex}) digitales I/O-Modul 17 (11 _{hex}) analoges Modul I/O-Spannung 18 (12 _{hex}) analoges Modul I/O-Strom 19 (13 _{hex}) analoges Modul PT-Temperatur 20 (14 _{hex}) analoges Modul PT-Temperatur 33 (21 _{hex}) analoges Modul Thermo-Temperatur 33 (21 _{hex}) 16-Bit Zählermodul 44 (22 _{hex}) 32-Bit Zählermodul 40 (28 _{hex}) SSI-Modul 49 (31 _{hex}) Motor-Starter-Modul als Direkt- oder Wendestarter 50 (32 _{hex}) elektronischer Motorstarter 65 (41 _{hex}) RS232-Modul 66 (42 _{hex}) RS485/422-Modul 67 (43 _{hex}) TTY-Modul
108 (6C _{hex})	MODULE COMMAND INTERFACE	G/S	ARRAY	Steuerschnittstelle des XI/ON- Moduls. ARRAY OF: BYTE: Steuer-Byte-Sequenz
109 (6D _{hex})	MODULE RESPONSE INTERFACE	G	ARRAY	Meldeschnittstelle des XI/ON- Moduls. ARRAY OF: BYTE: Melde-Byte Sequenz
110 (6E _{hex})	MODULE REGIS- TERED INDEX	G	ENUM USINT	Beinhaltet die in allen Modullisten aufgeführte Indexnummer.

Attr. Nr.	Attribut- Name	Zugriff	Тур	Beschreibung
dez. (hex.)				
111 (6F _{hex})	NUMBER OF SUP- PORTED CHANNELS	G	USINT	Gibt die Anzahl, der von dieser Modulinstanz unterstützten Kanäle an.
112 (70 _{hex})	DIAGNOS- TICS AND STATUS	G	WORD	Bit 0: 0 Es ist kein freigegebenes Statussignal aktiv (SSI_STSx = 0). 1 = "group diagnostics" Mindestens ein freigegebenes Statussignal ist aktiv (SSI_STSx = 1) Bit 1: 0 SSI-Gebersignal vorhanden. 1 = "SSI error/open circuit" SSI-Gebersignal fehlerhaft. (z.B. bedingt durch einen Leitungsbruch). Bit 2: 0 Ein Vergleich der Registerinhalte hat ergeben: (REG_SSI_POS) ≦ (REG_UPPER_LIMIT) 1 = "error POS > UPPER LIMIT" Ein Vergleich der Registerinhalte hat ergeben: (REG_SSI_POS) > (REG_UPPER_LIMIT)

Attr. Nr. dez. (hex.)	Attribut- Name	Zugriff	Тур	Beschreibung
	DIAG- NOSTICS AND STATUS	G	WORD	Bit 3: 0 Ein Vergleich der Registerinhalte hat ergeben: (REG_SSI_POS) ≧ (REG_LOWER_LIMIT) 1 = "error POS < LOWER LIMIT" Ein Vergleich der Registerinhalte hat ergeben: (REG_SSI_POS) < (REG_LOWER_LIMIT) Bit 4 0 Der Parametersatz des Moduls ist akzeptiert. 1 = "parameterization error" Gemäß des vorhandenen Parametersatzes ist der Betrieb des Moduls nicht möglich. Bit 5 bis 6 " <reserved>" Bit 7 0 Der SSI-Geber wird zyklisch ausgelesen. 1 = "SSI communication suspended" Die Kommunikation mit dem SSI-Geber ist gestoppt, da STOP = 1 (Prozessausgabe) oder</reserved>

Attr. Nr. dez. (hex.)	Attribut- Name	Zugriff	Тур	Beschreibung
	DIAG- NOSTICS AND STATUS	G	WORD	Bit 8 0 Ein Vergleich der Registerinhalte hat ergeben: (REG_SSI_POS) k (REG_CMP1) 1 = "CMP1 register value matches POS" Ein Vergleich der Registerinhalte hat ergeben: (REG_ SSI_POS) = (REG_CMP1) Bit 9 0 Grundzustand, d.h. der Gleichstand der Registerinhalte (REG_SSI_POS) = (REG_CMP1) hat nach dem letzten Rücksetzen noch nicht stattgefunden. 1 = "CMP1 flag set" Der Gleichstand der Registerinhalte (REG_SSI_POS) = (REG_CMP1) hat stattgefunden. Dieser Merker muss mit dem Bit 9 des Attributs CONTROL zurückgesetzt werden. Bit 10 0 Ein Vergleich der Registerinhalte hat ergeben: (REG_SSI_POS) < (REG_CMP1) 1 = "POS >= CMP1 register value" Ein Vergleich der Registerinhalte hat ergeben: (REG_SSI_POS) ≥ (REG_CMP1)

Тур	Beschreibung
WORD	Bit 11 0 Ein Vergleich der Registerinhalte hat ergeben: (REG_SSI_POS) k (REG_CMP2) 1 = "CMP2 register value matches POS" Ein Vergleich der Registerinhalte hat ergeben: (REG_SSI_POS) = (REG_CMP2) Bit 12 0 Grundzustand, d.h. der Gleichstand der Registerinhalte (REG_SSI_POS) = (REG_CMP2) hat nach dem letzten Rücksetzen noch nicht stattgefunden. 1 = "CMP2 flag set" Der Gleichstand der Registerinhalte (REG_SSI_POS) = (REG_CMP2) hat stattgefunden. Dieser Merker muss mit dem Bit 12 des Attributs CONTROL zurückgesetzt werden. Bit 13 0 Ein Vergleich der Registerinhalte hat ergeben: (REG_SSI_POS) < (REG_CMP2) 1 = "POS >= CMP2 register value" Ein Vergleich der Registerinhalte hat ergeben:
G S	CS CONTRACTOR

Attr. Nr. dez. (hex.)	Attribut- Name	Zugriff	Тур	Beschreibung
	DIAG- NOSTICS AND STATUS	G	WORD	Bit 14 0 Die SSI-Geberwerte verändern sich in Richtung größere Werte oder die Werte sind konstant. 1 = "counting downwards" Die SSI-Geberwerte verändern sich in Richtung kleinere Werte.
				Bit 15 0 Die SSI-Geberwerte verändern sich in Richtung kleinere Werte oder die Werte sind konstant. 1 = "counting upwards" Die SSI-Geberwerte verändern sich in Richtung größere Werte.

Attr. Nr.	Attribut- Name	Zugriff	Тур	Beschreibung
dez. (hex.)				
113 (71 _{hex})	RESULT WRITE OPERATION	G	BYTE	Bit 0 bis 5 " <reserved>" Bit 6: 0 Kein Änderungsauftrag der Daten in der Registerbank durch Prozessausgabe, d.h. WRITE OPERATION = 0. Ein Schreibauftrag würde mit dem nächsten Telegramm der Prozessausgabedaten angenommen. (Handshake zur Datenübertragung in die Register) 1 = "control register write acknowledged" Es wurde eine Änderung der Registerinhalte durch eine Prozessausgabe beauftragt, d.h. WRITE OPERATION = 1. Ein Schreibauftrag würde mit dem nächsten Telegramm der Prozessausgabedat. nicht angenommen. Bit 7: 0 Beschreiben des in den Prozessausgabedaten mit ADDRESS WRITE REGISTER adressierten Registers mit den Nutzdaten der Prozessausgabe konnte nicht durchgeführt werden. 1 = "control register write accepted" Das Beschreiben des in den Prozessausgabedaten mit ADDRESS WRITE REGISTER adressierten Registers mit den Nutzdaten der Prozessausgabedaten mit ADDRESS WRITE REGISTER adressierten Registers mit den Nutzdaten der Prozessausgabedaten mit ADDRESS WRITE REGISTER adressierten Registers mit den Nutzdaten der Prozessausgabe wurde erfolgreich durchgeführt.</reserved>

Attr. Nr.	Attribut- Name	Zugriff	Тур	Beschreibung
dez. (hex.)				
114 (72 _{hex})	RESULT READ OPERATION	G	ВҮТЕ	Bit 0 bis 6: " <reserved>" Bit 7: 0 Das Lesen des in ADDRESS READ REGISTER angegeben Registers wurde akzeptiert und durchgeführt. Der Inhalt des Registers befindet sich in VALUE READ REGISTER. 1 = "register read operation aborted" Das Lesen des in ADDRESS READ REGISTER angegeben Registers wurde nicht akzeptiert. VALUE READ REGISTER ist Null.</reserved>
115 (73 _{hex})	ADDRESS READ REGISTER	G	UINT	Adresse des Input-Registers, dessen Inhalt bei RESULT READ OPERATION = 0 in VALUE READ REGISTER ange- geben wird.
116 (74 _{hex})	VALUE READ REGISTER	G	DWORD	Inhalt des Registers, das gelesen werden soll, falls RESULT READ OPERATION = 0. Falls RESULT READ OPERATION = 1, ist VALUE READ REGISTER = 0.

Attr. Nr.	Attribut- Name	Zugriff	Тур	Beschreibung
dez. (hex.)				
117 (75 _{hex})	CONTROL	G/S	WORD	Bit 0 bis 6: " <reserved>" Bit 7: 0 Anforderung, den SSI-Geber zyklisch auszulesen 1 = "suspend communication requested" Anforderung, die Kommunikation mit dem Geber zu unterbrechen. Bit 8: 0 Grundzustand, d.h. die Datenbits 8 bis 10 des Attributs DIAG- NOSTICS AND STATUS haben immer den Wert 0, unabhängig vom SSI-Geberwert. 1 = "compare/flag CMP1 active" Vergleich aktiv, d.h. die Datenbits 8 bis 10 des Attributs DIAG- NOSTICS AND STATUS haben einen Wert abhängig vom Vergleichsergebnis zum SSI-Geberwert.</reserved>
				Bit 9: 0 Grundzustand, d.h. Rücksetzen von Bit 9 des Attributs DIAG- NOSTICS AND STATUS nicht aktiv. 1 = "clear CMP1 flag" Rücksetzen von Bit 9 des Attributs DIAGNOSTICS AND STATUS aktiv. Bit 10: " <reserved>"</reserved>

Attr. Nr.	Attribut- Name	Zugriff	Тур	Beschreibung
dez. (hex.)				
	CONTROL	G/S	WORD	Bit 11: 0 Grundzustand, d.h. die Datenbits 11 bis 13 des Attributs DIAG- NOSTICS AND STATUS haben immer den Wert 0, unabhängig vom SSI-Geberwert. 1 = "compare/flag CMP2 active" Vergleich aktiv, d.h. die Datenbits 11 bis 13 des Attributs DIAG- NOSTICS AND STATUS haben einen Wert abhängig vom Vergleichsergebnis zum SSI-Geberwert.
				Bit 12: 0 Grundzustand, d.h. kein Rücksetzen von Bit 12 des Attributs DIAGNOSTICS AND STATUS aktiv. 1 = "clear CMP2 flag" Rücksetzen von Bit 12 des Attributs DIAGNOSTICS AND STATUS aktiv.
				Bit 13 bis 15: " <reserved>"</reserved>
118 (76 _{hex})	ADDRESS READ REGISTER	G/S	UINT	Adresse des Registers, dessen Inhalt bei Bit 7 = 0 des Attributs RESULT READ OPERATION mit VALUE READ REGISTER angegeben wird.
119 (77 _{hex})	ADDRESS WRITE REGISTER	G/S	UINT	Adresse des Registers, das mit VALUE WRITE REGISTER beschrieben werden soll.

Attr. Nr.	Attribut- Name	Zugriff	Тур	Beschreibung
dez. (hex.)				
120 (78 _{hex})	VALUE WRITE REGISTER	G/S	DWORD	Wert, der in das Register mit der Adresse ADDRESS WRITE REGISTER geschrieben werden soll.
121 (79 _{hex})	WRITE OPERATION	G/S	BOOL	0: Grundzustand, d.h. es liegt keine Anforderung, den Inhalt des Registers zur Adresse ADDRESS WRITE REGISTER mit VALUE WRITE REGISTER zu überschreiben, an. Das Bit 6 vom Attribut RESULT WRITE OPERATION wird ggf. zurückgesetzt (= 0). 1: Anforderung den Inhalt des Registers zur Adresse ADDRESS WRITE REGISTER mit VALUE WRITE REGISTER zu überschreiben.
122 (7A _{hex})	WRITE REGISTER AND EXECUTE	S	STRUCT OF UINT DWORD	 Die Struktur enthält die beiden Teile: Adresse des Registers, das beschrieben werden soll. Wert, der geschrieben werden soll. Die Schreiboperation wird ohne Überprüfung, ob bereits ein Schreibauftrag vorliegt, durchgeführt.

Attr. Nr. dez. (hex.)	Attribut- Name	Zugriff	Тур	Beschreibung
123 (7B _{hex})	DIAGNOS- TICS	G	WORD	Bit 0: 0 Es ist kein freigegebenes Statussignal aktiv (SSI_STSx = 0). 1 = "group diagnostics" Mindestens ein freigegebenes Statussignal ist aktiv (SSI_STSx = 1) Bit 1: 0 SSI-Gebersignal vorhanden. 1 = "SSI error/open circuit" SSI-Gebersignal fehlerhaft. (z.B. bedingt durch einen Leitungsbruch).
				Bit 2: 0 Ein Vergleich der Registerinhalte hat ergeben: (REG_SSI_POS) ≦ (REG_UPPER_LIMIT) 1 = "error POS > UPPER LIMIT" Ein Vergleich der Registerinhalte hat ergeben: (REG_SSI_POS) > (REG_UPPER_LIMIT)

Attr. Nr. dez. (hex.)	Attribut- Name	Zugriff	Тур	Beschreibung
(IIII)	DIAGNOS- TICS	G	WORD	Bit 3: 0 Ein Vergleich der Registerinhalte hat ergeben: (REG_SSI_POS) ≧ (REG_LOWER_LIMIT) 1 = "error POS < LOWER LIMIT" Ein Vergleich der Registerinhalte hat ergeben: (REG_SSI_POS) < (REG_LOWER_LIMIT) Bit 4 0
				Der Parametersatz des Moduls ist akzeptiert. 1 = "parameterization error" Gemäß des vorhandenen Parametersatzes ist der Betrieb des Moduls nicht möglich. Bit 5 bis 15 " <reserved>"</reserved>
124 (7C _{hex})	CHECK MODE	G/S	WORD	Bit 0 bis 4 " <reserved>" Bit 5: 0 Datenleitung wird auf NULL überprüft. 1 = "disable SSI error detection" Nach dem letzten gültigen Bit wird nicht geprüft, ob die Datenleitung NULL liefert. Bit 6 bis 15 "<reserved>"</reserved></reserved>

3 Integration des Moduls in DeviceNet SSI Module CLass (VSC116)

Attr. Nr.	Attribut- Name	Zugriff	Тур	Beschreibung
dez. (hex.)				
125 (7D _{hex})	INVALID BITS LSB	G/S	USINT	Anzahl ungültiger Bits des vom SSI-Geber gelieferten Positionswertes an der LSB Seite. Die signifikante Wortbreite des an den Modulbus-Master übertragenen Positionswertes ist folglich: FRAME LENGTH - INVALID BITS MSB-INVALID BITS LSB. Die ungültigen Bits LSB-seitig werden durch Rechtsschieben des Positionswertes, beginnend mit dem LSB, entfernt. (Default 0 Bit = 0 _{hex}). Grundsätzlich muss INVALID BITS MSB + INVALID BITS LSB kleiner sein als FRAME LENGTH.
126 (7E _{hex})	BITRATE		ENUM USINT	0 = "1 Mbps" 1 = "500 kbps" 2 = "250 kbps" 3 = "100 kbps" 4 = "125 kbps" 5 = "83 kbps" 6 = "71 kbps" 7 = "62,5 kbps" 8 bis 15 " <reserved>"</reserved>
128 (80 _{hex})	FRAME LENGTH	G/S	USINT	Anzahl der Bits des SSI-Daten- Frames. Grundsätzlich muss FRAME LENGTH größer sein als INVALID_BITS ¹⁾ . Default: 25 = 19 _{hex}
129 (81 _{hex})	KIND OF CODING SSI	G/S	BOOL	0: "Binary code" 1: "GRAY code"

3 Integration des Moduls in DeviceNet SSI Module CLass (VSC116)

Attr. Nr. dez.	Attribut- Name	Zugriff	Тур	Beschreibung
(hex.)				
130 (82 _{hex})	INVALID BITS MSB	G/S	USINT	Anzahl ungültiger Bits des vom SSI-Geber gelieferten Positionswertes an der MSB Seite. Die signifikante Wortbreite des an den Modulbus-Master übertragenen Positionswertes ist folglich: FRAME LENGTH - INVALID BITS MSB - INVALID BITS LSB. Die ungültigen Bits MSB-seitig werden durch Maskierung des Positionswertes auf Null gesetzt. Grundsätzlich muss INVALID BITS MSB + INVALID BITS LSB kleiner sein als FRAME LENGTH. Default: 0 = 0hex

¹⁾ INVALID_BITS: INVALID BITS MSB + INVALID BITS LSB

3 Integration des Moduls in DeviceNet SSI Module CLass (VSC116)

4 Integration des Moduls in CANopen

Einleitung

Ab der Firmware-Version V3.00 ist bei XN-GW-CANOPEN die Unterstützung von XN-1SSI-Modulen implementiert worden.

Allgemeines

Das XN-1SSI-Modul gehört wie auch das XN-1CNT-24VDC in die Gerätegruppe der Encoder (CANopen-Device-Profile DS406). Die aufgeführten Objekte umfassen alle Funktionalitäten dieser Gerätegruppe, werden aber für das XN-1SSI-Modul nur teilweise verwendet.

4 Integration des Moduls in CANopen Einleitung

Encoder-spezifische Default-PDOs

Diese zusätzlichen PDOs sind defaultmäßig immer auf "Invalid" gesetzt.

Vor einer Freigabe dieser PDOs sind die entsprechenden Parameter zu prüfen. Das gilt insbesondere für die COB-IDs, da diese dem Default-Master-Slave-Connection-Set entstammen und anderen Node-IDs zugeordnet sind. Aus diesem Grund dürfen Nodes mit entsprechender Node-ID nicht im Netz existieren, bzw. dürfen diese Nodes die entsprechenden COB-IDs nicht nutzen.

Der Transmission-Type dieser PDOs ist generell 255.

Tabelle 15: Übersicht der spezifischen Default-PDOs für die Encoder-Module XN-1SSI und XN-1CNT-24VDC

PDO	Bedeutung	COB-ID TPDO ¹⁾	COB-ID TPDO ²⁾	COB-ID RPDO
PDO9	1. Gruppe Encoders (Kanäle 0 + 1)	8000 01 E0h + Node-ID	C000 01E0h + Node-ID	80000260h + Node-ID
PDO10	2. Gruppe Encoders (Kanäle 2 + 3)	8000 02E0h + Node-ID	C000 02E0h + Node-ID	80000360h + Node-ID
PDO11	3. Gruppe Encoders (Kanäle 4 + 5)	8000 03E0h + Node-ID	C000 03E0h + Node-ID	8000 0460h + Node-ID
PDO12	4. Gruppe Encoders (Kanäle 6 + 7)	8000 04E0h + Node-ID	C000 04E0h + Node-ID	8000 0560h + Node-ID

¹⁾ Gilt ab Firmware-Version 2.03

²⁾ Gilt für Firmware-Versionen kleiner 2.03

Die Encoders-Device-Profile-Implementierung

Übersicht Encoders-Device-Profile-Bereich

Die folgende Tabelle gibt einen Überblick über die Objekt-Dictionary-Einträge, die durch das Device Profile für Encoders CiA/DS406 definiert sind und die vom XI/ON-Gateway unterstützt werden. Da es sich um das 2. Device-Profile des XI/ON-Gateways handelt, haben alle Einträge einen Offset von 800h gegenüber den Angaben im DS406 (6800_{hex} bis 6FFF_{hex}). Dieser Teil des Objektverzeichnis enthält allgemeine Angaben, wie z.B Geräteidentifikation, Herstellername und Kommunikationsparameter.

Die herstellerspezifischen Objekte liegen im Bereich $58xx_{hex}$.

Tabelle 16: Überblick über die Objekte für Encoders

Index	Objekt	Name	Name in der Software I/O Assistent	Zugriff
5800 _{hex}	ARRAY	Encoder Basic Mode		rw
5801 _{hex}	ARRAY	Encoder Config	REG_PARA1	rw
5802 _{hex}	ARRAY	Encoder Status		ro
5803 _{hex}	ARRAY	Encoder Flags		rw
5804 _{hex}	ARRAY	Encoder Diag	REG_DIAG1	ro
5805 _{hex}	ARRAY	SSI Native Status		ro
5806 _{hex}	ARRAY	SSI Optional Encoder Status		ro
5808 _{hex}	ARRAY	Encoder Control		rw
5810 _{hex}	ARRAY	Counter Load Prepare Value		rw
5811 _{hex}	ARRAY	Counter Puls Width		rw
5820 _{hex}	ARRAY	Measuring Integration Time		rw
5821 _{hex}	ARRAY	Measuring Low Limit		rw

Index	Objekt	Name	Name in der Software I/O Assistent	Zugriff
5822 _{hex}	ARRAY	Measuring High Limit		rw
5823 _{hex}	ARRAY	Measuring Units per Revolution		rw
5840 _{hex}	ARRAY	SSI Diag Mapping	REG_SSI_MASK	rw
6800 _{hex}	VAR	Operating parameters		rw
6810 _{hex}	VAR	Preset value for multi- sensor devices	REG_OFFSET	rw
6820 _{hex}	VAR	Position value for multi- sensor devices	REG_SSI_POS	ro
6B00 _{hex}	ARRAY	Cam state register		ro
6B01 _{hex}	ARRAY	Cam enable register		rw
6B02 _{hex}	ARRAY	Cam polarity register		rw
6B10 _{hex}	ARRAY	Cam 1 low limit	REG_CMP2	rw
6B20 _{hex}	ARRAY	Cam 1 high limit	REG_CMP1	rw
6B30 _{hex}	ARRAY	Cam 1 hysteresis		rw
6C00 _{hex}	ARRAY	Area State Register		ro
6C01 _{hex}	ARRAY	Work Area Low Limit		rw
6C02 _{hex}	ARRAY	Work Area High Limit		rw
6D00 _{hex}	VAR	Operating Status		ro
6D01 _{hex}	VAR	SingleTurn Resolution (rotary), Measuring Step (linear)		ro
6D02 _{hex}	VAR	Number of distinguis- hable revolutions		ro

Index	Objekt	Name	Name in der Software I/O Assistent	Zugriff
6FFF _{hex}	VAR	Device Type		ro

Objekt 5800_{hex} – Encoder Basic Mode

Dieses Objekt hat beim XN-1SSI-Modul keine Funktion.

Objekt 5801_{hex} – Encoder Config

Das Objekt **Encoder Config** wirkt auf die Parameter-Bytes 0 bis 3 des XN-1SSI-Moduls und dient zur Einstellung der Konfiguration. Bei Schreibzugriffen wird ein Parameter-Update auf dem XI/ON-Modulbus ausgelöst. Der Parameter wird im Gateway nichtflüchtig gespeichert und bei jedem Node-Reset wieder hergestellt.

Tabelle 17: Objekt 5801_{hex} Beschreibung

INDEX	5801 _{hex}
Name	Encoder Config
Objekt-Code	ARRAY
Datentyp	Unsigned32
Zugriff	rw
Default-Wert	No
PDO-Mapping	No

Tabelle 18: Aufbau der Datenbytes

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Byte 0	X	X	DIS_ ERR_ SSI	X	X	X	X	X
Byte 1	Χ	INVALI	INVALID_BITS_MSB			_BITS_L	SB	
Byte 2	Χ	Χ	Χ	X	SSI_BIT_	RATE		
Byte 3	SSI_ CODE_ G/D	X	SSI_FRAME_LEN					

Tabelle 19: Aussage der Datenbits

Bezeichnung	Wert	Beschreibung
DIS_ERR_SSI Geber-Datenleitungs- Pruefung	0 ¹⁾	Aktivieren: Datenleitung wird auf NULL überprüft.
	1	Deaktivieren Nach dem letzten gültigen Bit wird nicht geprüft, ob die Daten- leitung NULL liefert.
INVALID_BITS_LSB Anzahl ungueltiger Bit (LSB)	0 bis 15	Anzahl ungültiger Bits des vom SSI-Geber gelieferten Positionswertes an der LSB Seite. Die signifikante Wortbreite des an den Modulbus-Master übertragenen Positionswertes ist folglich: SSI_FRAME_LEN - INVALID_BITS_MSB-INVALID_BITS_LSB. Die ungültigen Bits LSB-seitig werden durch Rechtsschieben des Positionswertes, beginnend mit dem LSB, entfernt. Grundsätzlich muss INVALID_BITS_MSB + INVALID_BITS_LSB kleiner sein als SSI_FRAME_LEN. Default 0 Bit = 0hex

Bezeichnung	Wert	Beschreibung
INVALID_BITS_MSB Anzahl ungueltiger Bit (MSB)	0 bis 7	Anzahl ungültiger Bits des vom SSI-Geber gelieferten Positionswertes an der MSB Seite. Die signifikante Wortbreite des an den Modulbus-Master übertragenen Positionswertes ist folglich: SSI_FRAME_LEN - INVALID_BITS_MSB - INVALID_BITS_LSB. Die ungültigen Bits MSB-seitig werden durch Maskierung des Positionswertes auf Null gesetzt. Grundsätzlich muss INVALID_BITS_MSB + INVALID_BITS_LSB kleiner sein als SSI_FRAME_LEN. Default: 0 = 0hex
SSI_BIT_RATE	0	1000000 Bit/s
Bituebertragungsrate	1 ¹⁾	500000 Bit/s
	2	250000 Bit/s
	3	125000 Bit/s
	4	100000 Bit/s
	5	83000 Bit/s
	6	71000 Bit/s
	7	62500 Bit/s
	8 bis 15	Reserve
SSI_FRAME_LEN Anzahl Datenrahmen- bits	1 bis 32	Anzahl der Bits des SSI-Daten- Frames. Grundsätzlich muss SSI_FRAME_LEN größer sein als INVALID_BITS. Default: 25 = 19 _{hex}

Bezeichnung	Wert	Beschreibung
SSI_CODE_G/D Datenformat	01)	SSI-Geber sendet Daten im Binär-Code
	1	SSI-Geber sendet Daten im Gray-Code

¹⁾ Default (Werkseinstellung)

Objekt 5802_{hex} – Encoder Status

Beim XN-1SSI-Modul werden die Bits 6 und 7 des Objekt **Encoder Status** Counter-kompatibel emuliert. Die Bits beschreiben die Bewegungsrichtung der aktuellen Werte.

Tabelle 20: Objekt 5802_{hex} Beschreibung

INDEX	5802 _{hex}
Name	Encoder Status
Objekt-Code	ARRAY
Datentyp	Unsigned8
Zugriff	ro
Default-Wert	No
PDO-Mapping	Yes

Tabelle 21: Aufbau Datenbyte 6 der Prozesseingabe

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Byte 6	STS_ UP	STS_ DN	0	0	0	0	0	0

Tabelle 22: Aussage der Datenbits 6 und 7

STS_UP (LED UP)	0	Die SSI-Geberwerte verändern sich in Richtung kleinere Werte oder die Werte sind konstant.
	1	Die SSI-Geberwerte verändern sich in Richtung größere Werte.
STS_DN (LED DN)	0	Die SSI-Geberwerte verändern sich in Richtung größere Werte oder die Werte sind konstant.
	1	Die SSI-Geberwerte verändern sich in Richtung kleinere Werte.

Objekt 5803_{hex} – Encoder Flags

Beim XN-1SSI-Modul werden die Bits 3 bis 6 des Objekt **Encoder Flags** so weit wie möglich Counter-kompatibel emuliert. Das Objekt umfasst die Bits **FLAG_CMP1**, **FLAG_CMP2**, **STS_OFLW** und **STS_UFLW**. Im Gegensatz zum Counter-Modul sind die Bit **STS_OFLW** und **STS_UFLW** beim SSI-Modul flüchtige Statusbits. Alle anderen Bits sind 0.

Durch Beschreiben des Objektes mit einem beliebigen Wert werden die Merker **FLAG_CMP1** und **FLAG_CMP2** zurückgesetzt. Ausnahme: sofern die jeweilige Bedingung für das Setzen eines Merkers weiterhin erfüllt ist, bleibt der entsprechende Merker weiterhin gesetzt.

Tabelle 23: Objekt 5803_{hex} Beschreibung

INDEX	5803 _{hex}
Name	Encoder Flags
Objekt-Code	ARRAY
Datentyp	Unsigned8
Zugriff	rwr
Default-Wert	No
PDO-Mapping	Yes

Tabelle 24: Aufbau des Datenbytes

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0	STS_ UFLW	STS_ OFLW	FLAG_ CMP2	FLAG_ CMP1	0	0	0

Tabelle 25: Aussage der Datenbits 3 bis 6

FLAG_CMP1	0	Grundzustand, d.h. der Gleichstand der Registerinhalte (REG_SSI_POS) = (REG_CMP1) hat nach dem letzten Rücksetzen noch nicht stattgefunden.
	1	Der Gleichstand der Registerinhalte (REG_SSI_POS) = (REG_CMP1) hat stattgefunden. Dieser Merker muss mit dem Bit CLR_CMP1 = 1 der Prozessausgabedaten zurückgesetzt werden.
FLAG_CMP2	0	Grundzustand, d.h. der Gleichstand der Registerinhalte (REG_SSI_POS) = (REG_CMP2) hat nach dem letzten Rücksetzen noch nicht stattgefunden.
	1	Der Gleichstand der Registerinhalte (REG_SSI_POS) = (REG_CMP2) hat stattgefunden. Dieser Merker muss mit dem Bit CLR_CMP2 = 1 der Prozessausgabedaten zurückgesetzt werden.
STS_UFLW	0	Ein Vergleich der Registerinhalte hat ergeben: (REG_SSI_POS) ≧ (REG_LOWER_LIMIT)
	1	Ein Vergleich der Registerinhalte hat ergeben: (REG_SSI_POS) < (REG_LOWER_LIMIT)
STS_OFLW	0	Ein Vergleich der Registerinhalte hat ergeben: (REG_SSI_POS) ≦ (REG_UPPER_LIMIT)
	1	Ein Vergleich der Registerinhalte hat ergeben: (REG_SSI_POS) > (REG_UPPER_LIMIT)

Objekt 5804_{hex} – Encoder Diag

Das Objekt **Encoder Diag** liest das Diagnose-Byte des XN-1SSI-Moduls.

Tabelle 26: Objekt 5804hex Beschreibung

INDEX	5804 _{hex}
Name	Encoder Diag
Objekt-Code	ARRAY
Datentyp	Unsigned8
Zugriff	ro
Default-Wert	No
PDO-Mapping	No

Tabelle 27: Aufbau des Datenbytes

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
X	X	X	ERR_ PARA	STS_ UFLW	STS_ OFLW	ERR_ SSI	SSI_ DIAG

Tabelle 28: Aussage der Datenbits

Bezeichnung	Wert	Beschreibung
SSI_DIAG	0	Es ist kein freigegebenes Statussignal aktiv: SSI_STSx = 0 oder es liegen keine Statusmeldungen vom SSI-Geber vor.
	1	Mindestens ein freigegebenes Statussignal ist aktiv: SSI_STSx = 1.
ERR_SSI	0	SSI-Gebersignal vorhanden.
	1	SSI-Gebersignal fehlerhaft (z.B. bedingt durch einen Leitungsbruch).

Bezeichnung	Wert	Beschreibung
STS_OFLW	0	SSI-Geberwert ist unterhalb / gleich der Obergrenze.
	1	SSI-Geberwert ist oberhalb der Obergrenze. Es ist ein Überlauf aufgetreten.
STS_UFLW	0	SSI-Geberwert ist oberhalb / gleich der Untergrenze.
	1	SSI-Geberwert ist unterhalb der Untergrenze. Es ist ein Unterlauf aufgetreten.
ERR_PARA	0	Der Parametersatz des Moduls ist akzeptiert.
	1	Gemäß des vorhandenen Parametersatzes ist der Betrieb des Moduls nicht möglich.

Objekt 5805_{hex} – SSI Native Status

Das Objekt **SSI Native Status** liest die Bytes 0 bis 1 der Prozesseingabe vom XN-1SSI-Modul.

Durch Beschreiben des Objektes mit einem beliebigen Wert werden die nichtflüchtigen Merker **FLAG_CMP1** und **FLAG_CMP2** zurückgesetzt. Ausnahme: sofern die jeweilige Bedingung für das Setzen eines Merkers weiterhin erfüllt ist, bleibt der entsprechende Merker weiterhin gesetzt.

Tabelle 29: Objekt 5805hex Beschreibung

INDEX	5805 _{hex}
Name	SSI Native Status
Objekt-Code	ARRAY
Datentyp	Unsigned16
Zugriff	rwr
Default-Wert	No
PDO-Mapping	Yes

Tabelle 30: Aufbau des Datenbytes

Byte	В7	B6	B5	B4	В3	B2	B1	В0
0	STS_ STOP	X	X	ERR_ PARA	STS_ UFLW	STS_ OFLW	ERR_ SSI	SSI_ DIAG
1	STS_ UP	STS_ DN	REL_ CMP2	FLAG_ CMP2	STS_ CMP2	REL_ CMP1	FLAG_ CMP1	STS_ CMP1

Tabelle 31: Aussage der Datenbits

Bezeichnung	Wert	Beschreibung
STS_STOP	0	Der SSI-Geber wird zyklisch ausgelesen.
	1	Die Kommunikation mit dem SSI-Geber ist gestoppt, da STOP = 1 (Prozessausgabe) oder ERR_PARA = 1.
ERR_PARA	0	Der Parametersatz des Moduls ist akzeptiert.
	1	Gemäß des vorhandenen Parametersatzes ist der Betrieb des Moduls nicht möglich.
STS_UFLW	0	Ein Vergleich der Registerinhalte hat ergeben: (REG_SSI_POS) ≧ (REG_LOWER_LIMIT)
	1	Ein Vergleich der Registerinhalte hat ergeben: (REG_SSI_POS) < (REG_LOWER_LIMIT)
STS_OFLW	0	Ein Vergleich der Registerinhalte hat ergeben: (REG_SSI_POS) ≦ (REG_UPPER_LIMIT)
	1	Ein Vergleich der Registerinhalte hat ergeben: (REG_SSI_POS) > (REG_UPPER_LIMIT)
ERR_SSI	0	SSI-Gebersignal vorhanden.
	1	SSI-Gebersignal fehlerhaft. (z.B. bedingt durch einen Leitungsbruch).
SSI_DIAG	0	Es ist kein freigegebenes Statussignal aktiv (SSI_STSx = 0).
	1	Mindestens ein freigegebenes Statussignal ist aktiv (SSI_STSx = 1)
STS_UP (LED UP)	0	Die SSI-Geberwerte verändern sich in Richtung kleinere Werte oder die Werte sind konstant.
	1	Die SSI-Geberwerte verändern sich in Richtung größere Werte.
STS_DN (LED DN)	0	Die SSI-Geberwerte verändern sich in Richtung größere Werte oder die Werte sind konstant.
	1	Die SSI-Geberwerte verändern sich in Richtung kleinere Werte.

Bezeichnung	Wert	Beschreibung
REL_CMP2	0	Ein Vergleich der Registerinhalte hat ergeben: (REG_SSI_POS) < (REG_CMP2)
	1	Ein Vergleich der Registerinhalte hat ergeben: (REG_SSI_POS) ≧ (REG_CMP2)
FLAG_CMP2	0	Grundzustand, d.h. der Gleichstand der Registerinhalte (REG_SSI_POS) = (REG_CMP2) hat nach dem letzten Rücksetzen noch nicht stattgefunden.
	1	Der Gleichstand der Registerinhalte (REG_SSI_POS) = (REG_CMP2) hat stattgefunden. Dieser Merker muss mit dem Bit CLR_CMP2 = 1 der Prozessausgabedaten zurückgesetzt werden.
STS_CMP2	0	Ein Vergleich der Registerinhalte hat ergeben: (REG_SSI_POS) k (REG_CMP2)
	1	Ein Vergleich der Registerinhalte hat ergeben: (REG_ SSI_POS) = (REG_CMP2)
REL_CMP1	0	Ein Vergleich der Registerinhalte hat ergeben: (REG_SSI_POS) < (REG_CMP1)
	1	Ein Vergleich der Registerinhalte hat ergeben: (REG_ SSI_POS) ≧ (REG_CMP1)
FLAG_CMP1	0	Grundzustand, d.h. der Gleichstand der Registerinhalte (REG_SSI_POS) = (REG_CMP1) hat nach dem letzten Rücksetzen noch nicht stattgefunden.
	1	Der Gleichstand der Registerinhalte (REG_SSI_POS) = (REG_CMP1) hat stattgefunden. Dieser Merker muss mit dem Bit CLR_CMP1 = 1 der Prozessausgabedaten zurückgesetzt werden.
STS_CMP1	0	Ein Vergleich der Registerinhalte hat ergeben: (REG_SSI_POS) k (REG_CMP1)
	1	Ein Vergleich der Registerinhalte hat ergeben: (REG_ SSI_POS) = (REG_CMP1)

Objekt 5806_{hex} – SSI Optional Encoder Status

Das Objekt **SSI Optional Encoder Status** liest Byte 2 der Prozesseingabe vom XN-1SSI-Modul. Die Bits 6 und 7 werden ausmaskiert.

Tabelle 32: Objekt 5806_{hex} Beschreibung

INDEX	5806 _{hex}
Name	SSI Optional Encoder Status
Objekt-Code	ARRAY
Datentyp	Unsigned8
Zugriff	ro
Default-Wert	No
PDO-Mapping	Yes

Tabelle 33: Aufbau des Datenbytes

Byte	B7	B6	B5	B4	B3	B2	B1	В0
2	mas- kiert (0)	mas- kiert (0)	X	X	SSI_ STS3	SSI_ STS2	SSI_ STS1	SSI_ STS0

Tabelle 34: Aussage der Datenbits

Bezeichnung	Wert	Beschreibung
SSI_STS3	0	Diese vier Bits geben Statusbits vom SSI-Geber mit den Statusmeldungen des SSI-Moduls weiter. Die
SSI_STS2	0	Statusbits werden bei einigen SSI-Gebern gemeinsam mit dem Positionswert übertragen.
SSI_STS1	0	
SSI_STS0	0	

Objekt 5808_{hex} – Encoder Control

Objekt 5810_{hex} – Counter Load Prepare Value

Objekt 5811_{hex} – Counter Puls Width

Objekt 5820_{hex} – Measuring Integration Time

Objekt 5821_{hex} – Measuring Low Limit

Objekt 5822_{hex} – Measuring High Limit

Objekt 5823_{hex} – Measuring Units per Revolution

Diese Objekte haben beim XN-1SSI-Modul keine Funktion.

Objekt 5840_{hex} – SSI Diag Mapping

Das Objekt **SSI Diag Mapping** schreibt bzw. liest das Register 51 (REG_SSI_MASK) des XN-1SSI-Moduls.

Das REG_SSI_MASK enthält die übernommenen SSI-Geber Diagnosen.

Einige SSI-Geber übertragen in dem Datenrahmen, den sie dem Modul übergeben, nicht ausschließlich den Positionswert, sondern liefern zusätzlich Statusmeldungen. Zur Bewertung des Messwertes seitens der Applikation ist es ggf. sinnvoll, diese Statusmeldungen zu berücksichtigen.

Durch Beschreiben des REG_SSI_MASK lassen sich maximal vier einzelne Bit aus dem Datenrahmen des SSI-Gebers entnehmen und in die Bit SSI_STSx der Prozesseingabedaten kopieren. Zudem kann bei Auslösen einer Statusmeldung mit einer azyklischen Diagnose die Nachricht "SSI Sammeldiagnose" erfolgen.

Tabelle 35: Objekt 5840_{hex} Beschreibung

INDEX	5840 _{hex}
Name	SSI Diag Mapping
Objekt-Code	ARRAY
Datentyp	Unsigned32
Zugriff	rw
Default-Wert	No
PDO-Mapping	No

Tabelle 36: Maskierung durch REG_SSI_MASK

Prozessein- gabedaten	REG_SSI_MASK								
	Byte	B7	B6	B5	B4	В3	B2	B1	В0
SSI_STS0	0	EN_D0_ RMS0	EN_D0_ DS	X	SSI_	FRAM	E_BIT	_SEL0	
SSI_STS1	1	EN_D1_ RMS1	EN_D1_ DS	X	SSI_	FRAM	E_BIT_	_SEL1	
SSI_STS2	2	EN_D2_ RMS2	EN_D2_ DS	X	SSI_	FRAM	E_BIT	_SEL2	
SSI_STS3	3	EN_D3_ RMS3	EN_D3_ DS	X	SSI_	FRAM	E_BIT_	_SEL3	

Tabelle 37: Aussage der Datenbits

Bezeichnung	Wert	Beschreibung
EN_Dx_RMSx	01)	Der Übertrag der SSI-Statusmeldungen in die Prozesseingabedaten ist nicht aktiviert
	1	Der Übertrag der SSI-Statusmeldungen in die Prozesseingabedaten ist aktiviert
EN_ Dx_DS	01)	Die Auswertung der SSI-Statusmeldungen für Bit 0 der Diagnose ist nicht aktiviert
	1	Die Auswertung der SSI-Statusmeldungen für Bit 0 der Diagnose ist aktiviert.
SSI_FRAME_BIT_ SEL	0-31	Angabe des zur Auswertung bzw. zum Kopieren selektierten Bist im Frame des SSI-Gebers. Default:0

1) Default

Es gilt für Bit 0("SSI Sammeldiagnose") der Diagnoseschnittstelle und SSI_DIAG der Prozesseingabedaten:

(SSI_STS0 & EN_D0_DS) || (SSI_STS1 & EN_D1_DS) || (SSI_STS2 & EN_D2_DS) || (SSI_STS3 & EN_D3_DS)

Objekt 6800_{hex} - Operating Parameters

Das Objekt 6800_{hex} (entspricht Objekt 6000_{hex} gemäß CiA DS406) hat bei XI/ON keine Bedeutung und existiert nur, weil es sich um ein "Mandatary"-Objekt nach DS406 handelt.

Tabelle 38: Objekt 6800_{hex} Beschreibung

INDEX	6800 _{hex}
Name	Operating Parameters
Objekt Code	VAR
Datentyp	Unsigned16
Zugriff	rw
Default-Wert XI/ON	00h
PDO-Mapping	No

Objekt 6810_{hex} – Preset Values for Multi-Sensor Devices

Das Objekt 6810_{hex} (entspricht Objekt 6010_{hex} gemäß CiA DS406) dient zur Nullpunktanpassung. Der Inhalt dieses Objektes wird zum SSI-Geberwert addiert. Der neu berechnete Wert wird im Objekt 6820_{hex} gespeichert.

Tabelle 39: Objekt 6810_{hex} Beschreibung

INDEX	6810 _{hex}
Name	Preset Value for multi-sensor devices
Objekt Code	ARRAY
Datentyp	Integer32
Zugriff	rw

INDEX	6810 _{hex}
Default-Wert	No
PDO-Mapping	Yes

Objekt 6820_{hex} – Position Value

Position Value for multi-sensor devices

Das Objekt 6820_{hex} (entspricht Objekt 6020_{hex} gemäß CiA DS406) enthält den SSI-Geberwert des XN-1SSI-Moduls. Der Inhalt des Objektes **Preset Values for Multi-Sensor Devices** enthält einen Wert der durch Addition den gemessenen Wert korrigiert, um eine Nullpunktverschiebung auszugleichen.

Tabelle 40: Objekt 6820_{hex} Beschreibung

INDEX	6820 _{hex}
Name	Position Value for multi- sensor devices
Objekt-Code	ARRAY
Datentyp	Integer32
Zugriff	ro
Default-Wert	No
PDO-Mapping	Yes

Objekt 6B00_{hex} – CAM State Register

Das Objekt **CAM State Register** zeigt laut DS406 an, ob sich der aktuelle Zählerstand innerhalb des durch **CAM1 Low Limit** und **CAM1 High Limit** (Objekt 6B10_{hex} und 6B20_{hex}) begrenzten Bereichs befindet.

Tabelle 41: Objekt 6B00hex Beschreibung

INDEX	6B00 _{hex}
Name	CAM State Register
Objekt-Code	ARRAY
Datentyp	Unsigned8
Zugriff	ro
Default-Wert	No
PDO-Mapping	Yes

Tabelle 42: Aussage des Datenbytes

Wert	Bedeutung
00 _{hex} (01 _{hex}) ¹⁾	Der aktueller SSI-Geberwert liegt außerhalb des durch CAM1 Low Limit und CAM1 High Limit begrenzten Bereichs oder die Vergleichsfunktion ist nicht aktiviert
01 _{hex} (00 _{hex}) ¹⁾	Der aktueller SSI-Geberwert liegt außerhalb des durch CAM1 Low Limit und CAM1 High Limit begrenzten Bereichs oder die Vergleichsfunktion ist nicht aktiviert

falls Objekt Cam polarity register (6B02_{hex}) = 01_{hex} ist, wird invertiert

Objekt 6B01_{hex} – CAM Enable Register

Das Objekt **CAM Enable Register** legt fest, ob ein Vergleich des SSI-Geberwertes mit den Werten **CAM1 Low Limit** und **CAM1 High Limit** (Objekt 6B10_{hex} und 6B20_{hex}) stattfindet.

Tabelle 43: Objekt-6B01_{hex} Beschreibung

INDEX	6B01 _{hex}
Name	CAM Enable Register
Objekt-Code	ARRAY
Datentyp	Unsigned8
Zugriff	rw
Default-Wert	No
PDO-Mapping	No

Tabelle 44: Aussage des Datenbytes

Wert	Bedeutung
00 _{hex}	Ein Vergleich des SSI- Geberwertes mit den Werten CAM1 Low Limit und CAM1 High Limit (Objekt 6B10hex und 6B20hex) findet nicht statt.
01 _{hex}	Ein Vergleich des SSI- Geberwertes mit den Werten CAM1 Low Limit und CAM1 High Limit (Objekt 6B10hex und 6B20hex) findet statt.

Objekt 6B02_{hex} – CAM Polarity Register

Das Objekt **CAM Polarity Register** kann eine Invertierung des mit Objekt-**6B00**_{hex} dargestellten Werten bewirken.

Tabelle 45: Objekt 6B02_{hex}Beschreibung

INDEX	6B02 _{hex}
Name	CAM Polarity Register
Objekt-Code	ARRAY
Datentyp	Unsigned8
Zugriff	rw
Default-Wert	No
PDO-Mapping	No

Tabelle 46: Aussage des Datenbytes

Wert	Bedeutung
00 _{hex}	Der mit Objekt- 6B00 _{hex} dargestellte Wert wird nicht invertiert.
01 _{hex}	Der mit Objekt- 6B00 _{hex} dargestellte Wert wird invertiert.

Objekt 6B10_{hex} – CAM1 Low Limit

Das Objekt CAM1 Low Limit definiert nach DS406 eine untere Schaltgrenze des Zählbereichs.

Objekt **CAM1 Low Limit** entspricht dem Vergleichswert2 des XN-1SSI-Moduls.

Tabelle 47: Objekt 6B10_{hex}Beschreibung

INDEX	6B10 _{hex}
Name	CAM1 Low Limit
Objekt-Code	ARRAY
Datentyp	Integer32
Zugriff	rw
Default-Wert	No
PDO-Mapping	No

Objekt 6B20_{hex} – CAM1 High Limit

Das Objekt **CAM1 High Limit** definiert nach DS406 eine obere Schaltgrenze.

Objekt **CAM1 High Limit** entspricht dem Vergleichswert1 des XN-1SSI-Moduls.

Tabelle 48: Objekt 6B20_{hex} Beschreibung

INDEX	6B20 _{hex}
Name	CAM1 High Limit
Objekt-Code	ARRAY
Datentyp	Integer32
Zugriff	rw
Default-Wert	No
PDO-Mapping	No

Objekt 6B30_{hex} - CAM1 Hysteresis

Dieses Objekt hat beim XN-1SSI-Modul keine Funktion

Objekt 6D00_{hex} - Operating Status

Objekt 6D01_{hex} - SingleTurn Resolution (rotary), Measuring step (linear)

Objekt 6D02_{hex} - Number of distinguishable revolutions

Die Objekte 6D00h bis 6D02h (entsprechen den Objekten 6500h bis 6502h gemäß CiA DS406)
haben bei XI/ON keine Bedeutung und existieren
nur, weil es sich um "Mandatary"-Objekte nach
DS406 handelt. Die Objekte sind bei XI/ON immer auf 0 gesetzt.

Objekt 6FFF_{hex} - Device Type

Das Objekt 6FFFh (entspricht Objekt 67FFh gemäß CiA DS406) liefert den Typ des zweiten unterstützten Device-Profiles zurück. Das Objekt erhält den Wert 000A 0196hex. Das Low-Word (0196_{hex}) spezifiziert das Device-Profile (nach CiA DS406: Zählermodul). Das High-Word (000Ahex) beschreibt den Zähler-Typ (10_{dez} = Multi-Sensor-Encoder-Interface)

Tabelle 49: Objekt-6FFF_{hex} Beschreibung

INDEX	6FFF _{hex}
Name	Device Type
Objekt-Code	VAR
Datentyp	Unsigned32
Zugriff	ro
Default-Wert	000A 0196 _{hex}
PDO-Mapping	No

Zusätzliche Emergencies

Folgende CANopen-Emergencies können durch ein SSI-Modul ausgelöst werden:

Error code	Name	Byte 3	Byte 4	Byte 5	Bedeutung
7000 _{hex}	Additional modules	Modul- Nr.	Kanal-Nr. (immer 1)	0x01	SSI-Diag
7000 _{hex}	Additional modules	Modul- Nr.	1	0x02	SSI-Error
7000 _{hex}	Additional modules	Modul- Nr.	1	0x04	Overflow- Error
7000 _{hex}	Additional modules	Modul- Nr.	1	0x08	Underflow- Error
7000 _{hex}	Additional modules	Modul- Nr.	1	0x10	Parameter- Error

Α	Anschlussbild	32
	Anzeigeelemente	29
В	Betriebstemperatur Bitübertragungsrate Busabschlusswiderstände	27
С	CANopen IntegrationCL	
D	D	
E	Elektromagnetische Verträglichkeit Emergencies	
G	Geberspannung GeberstromGND	27
ı	Isolationsspannung	27
L	Lagertemperatur	28

	LED-Anzeige	29
	Leitungsimpedanz	27
	Leitungslänge	
М	Modulaustausch	11
N	Nennspannung Versorgungsklemme Nennstrom Modulbus Versorgungsklemme	27
0	Objekte Encoders Offsetfunktion	
Р	Parameter CANopen DeviceNet PROFIBUS-DP. PROFIBUS-DP	73
	Integration Prozessausgabe CANopen DeviceNet PROFIBUS-DP Prozesseingabe CANopen DeviceNet PROFIBUS-DP	101, 102 58 39 86
R	Register Registerbank Rücksetzen relative Feuchte	25
S	Schaltbild	26

	Schutzart	28
	Signaleingang	27
	Statusmeldungen	
	SSI-Geber	23, 94, 95
Т	Taktausgang	27
-	Technische Daten	
	Basismodule	31
	XN-1SSI	
	7.1.4 1001	
U	Übertragungskanäle	27
•	Übertragungsverfahren	
V	Verbindungstyp	
	RS422	27
	Verlustleistung	27
	Versorgungsspannung	