

PROFIL ENVIRONNEMENTAL PRODUIT (PEP)

Câbles optiques structure libre renforcée LSOH - 4 à 24 FO Intérieur / Extérieur Version Euroclasse Cca

GGM FO12BxFRLST

RESPONSABLE DE LA DÉCLARATION ET DE LA MISE SUR LE MARCHÉ

CONTACT GIGAMEDIA SAS go4blue@gigamedia.net 312 rue des Hauts de Sainghin CS 30114 59811 www.gigamedia.net LESQUIN CEDEX - FRANCE

Règles de rédaction: PEP-PCR-ed4-FR-2021 09 06 N° d'enregistrement : GIGA-00001-V01.01-FR Règles spécifiques: PSR-0001-ed4-FR-2022 11 16 N° d'habilitation du vérificateur : VH03 Informations et référentiels : www.pep-ecopassport.org Date d'édition: 07-2023 Durée de validité: 5 ans

Vérification indépendante de la déclaration et des données, conformément à l'ISO 14025 : 2010

Interne Externe

Revue critique du PCR conduite par un panel d'experts présidé par Julie ORGELET (DDemain)

Les PEP sont conformes à la norme XP C08-100-1 :2016 ou EN 50693 :2019

Les éléments du PEP ne peuvent être comparés avec les éléments issus d'un autre programme

Document conforme à la norme ISO 14025 : 2010 - « Marquages et déclarations environnementaux. Déclarations environnementales de Type III »

■ LES ENGAGEMENTS ENVIRONNEMENTAUX DE GIGAMEDIA

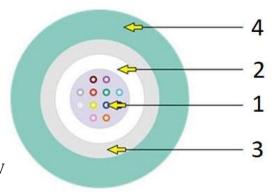
Adopter une politique d'achat responsable. GIGAMEDIA intègre les enjeux liés au développement durable dans sa politique d'achat en travaillant avec des partenaires certifiés et engagés dans une démarche RSE.

Fournir à nos clients des produits durables. GIGAMEDIA réduit les impacts environnementaux de ses packagings et produits sur l'ensemble des étapes de leur cycle de vie et éco-concevoir les produits et packagings de demain.

Communiquer en toute transparence sur nos activités. GIGAMEDIA s'engage à fournir à ses clients des informations précises et fiables sur chaque étape du cycle de vie de ses produits

PRODUIT DE RÉFÉRENCE

FONCTION


La gamme des câbles optiques de structure libre renforcée unitube 250µm avec gaine LSOH-FR Cca est destinée à un usage intérieur ou extérieur. Ces câbles sont dotés de renforts par mèches de verre contre les rongeurs qui lui assurent une étanchéité sèche et longitudinale. Ils permettent le raccordement de connecteurs sur site via l'usage d'un épanouisseur.

Ces câbles existent dans des versions multimode ou monomode, de 4 à 24 fibres optiques.

Ils conviendront particulièrement pour des applications de type tertiaire ou campus.

PRODUIT DE RÉFÉRENCE

- **1** 12 fibres optiques 250 μm
- **2 -** Tube souple sans gel
- 3 Étanchéité et Renforts par mèches de verres
- 4 Gaine extérieure LSOH, conforme IEC 61034-2 & 60754-2, stabilisée UV

Ce document présente les impacts environnementaux du produit de référence 12 FO version Euroclasse Cca : GGM FO12B3FRLST 12FO 50/125 OM3.

Les impacts environnementaux des produits complémentaires de la gamme des câbles optiques de structure libre renforcée unitube 250µm avec gaine LSOH-FR Cca sont présentés à la fin de cette fiche. Voir liste des articles en page 16.

UNITÉ FONCTIONELLE

« Transmettre 1 signal de communication (1 F0) sur 1 m, à une longueur d'onde de 1310 nm, pendant 10 ans et avec un taux d'utilisation de 25 %, en conformité avec les normes en vigueur » comme définie dans le PSR-0001-Ed4-FR-2022 11 16.

La durée et le taux d'utilisation correspondent à l'application « BÂTIMENT – LAN : Tertiaire » telle que définie dans le tableau donné en Annexe 1 des règles spécifiques aux Fils, Câbles et matériels de raccordement. ».

PRODUITS CONCERNÉS

Les données environnementales du Produit de Référence sont représentatives des données environnementales des références suivantes, qui lui sont associées :

> GGM FO12B3FRLST GGM FO12B4FRLST GGM FO12B9FRLST

△ MATÉRIAUX ET SUBSTANCES

La masse totale du produit de référence et de son emballage est 80,5 g dont 74,648 g pour le câble et 5,860 g d'emballage. (Calculs effectués pour une unité d'1 mètre de câble 12F0)

Les matériaux constitutifs sont repartis dans les matériaux suivants :

Métaux / Minéraux	Plastiques	Autres	Emballage
28,84%	64,40%	0,05%	6,72%

Tableau 1 - Matières constitutives (en pourcentage)

GIGAMEDIA a mis en place les procédures nécessaires pour assurer la conformité des produits à la réglementation en vigueur lors de leur mise sur le marché.

MÉTHODOLOGIE DE L'ANALYSE DU CYCLE DE VIE

L'Analyse du Cycle de Vie sur laquelle repose ce Profil Environnemental Produit (PEP) se fait en respect des critères imposés par le PCR-ed4-FR-2021 09 06 du Programme PEP ecopassport®. L'unité fonctionnelle et les scénarios de distribution, utilisation et de traitement des déchets sont conformes aux hypothèses fixées dans le PSR-0001-ed4-FR-2022 11 16.

Les résultats ont été obtenus à l'aide du logiciel EIME version 6.0.1 et de sa base de données en version CODDE-02-2023.

FABRICATION

- Le câble à fibre optique est fabriqué puis assemblé en France. Certains matériaux ont une provenance européenne, nord-américaine ou asiatique.
- Les matières nécessaires à la fabrication du produit, de l'emballage en amont des matières premières et de l'emballage du produit fini ont été considérées.
- Les transports amonts et le transport jusqu'à la dernière plateforme logistique ont été pris en compte. Les transports en camion ont été modélisés par un camion de capacité de chargement de 27t avec un taux de chargement de 85 % et un taux de retour à vide de 20 %.

Source PEFCR: https://ec.europa.eu/environment/eussd/smgp/pdf/PEFCR guidance v6.3.pdf

- Le taux de chutes des éléments façonnés et des éléments assemblés a été considéré.
- Les déchets liés à la fabrication du produit ont été considérés comme enfouis ou incinérés en accord avec l'annexe D du PCR-ed4-FR-2021 09 06.
- Le modèle électrique employé est le suivant :

Modèle énergétique Electricity Mix; Low voltage; 2018; France, FR

• Système de management environnemental certifié ISO 14001 en conception et fabrication.

GGM FO12BxFRLST

DES EMBALLAGES CONÇUS POUR RÉDUIRE L'IMPACT ENVIRONNEMENTAL :

- Les emballages ont été conçus conformément à la réglementation en vigueur (Directive 94/62/CE). Ce produit est conditionné sur un touret bois certifié PEFCTM, attestant d'une traçabilité de la filière bois et d'une gestion durable des forêts.
- L'emballage de 5,860g pour 1 mètre de produit emballé, est composé d'un touret bois renforcé par des tubes d'acier avec un emballage de protection. Le touret est considéré comme étant utilisé 1 fois.
- Conditionnement en longueur de 2100m sur touret.

DISTRIBUTION

La distribution du produit emballé depuis la dernière plate-forme logistique jusqu'aux lieux d'installation (France) a été modélisé par un transport en camion de 27 tonnes sur une distance de 1000km (scénario de transport national du PEP-PCR-ed4-FR-2021 09 06).

Un taux de charge des camions de 85 % et un taux de retour à vide de 20 % a été considéré.

Source PEFCR: https://ec.europa.eu/environment/eussd/smgp/pdf/PEFCR guidance v6.3.pdf

INSTALLATION

Les processus d'installation sont exclus des frontières du système, comme indiqué dans les règles spécifiques relatives aux Fils, Câbles et Matériels de raccordement du programme PEP ecopassport®.

Seule la fin de vie de l'emballage et un taux de chutes de 5% du câble est considérée dans cette étape..

L'installation du produit génère des emballages dont le traitement a été modélisé conformément au PCR-ed4-FR-2021 09 06 et au PSR-0001-ed4-FR-2022 11 16. La fin de vie de l'emballage a été modélisée de la façon suivante :

- Une collecte des déchets sur 1000 km via un transporteur routier de 27 tonnes avec un taux de charge à 85 % et un retour à vide de 20 %.
- Le traitement des déchets d'emballages a été modélisé comme indiqué ci-dessous, en accord avec l'annexe D du PCRed4-FR-2021 09 06:

	e de la formule fin de vie" (en %)	Taux de valorisation du matériau	Enfouissement	Incinération sans récupération d'énergie
Métaux	Acier (0,451 g)	80	20	0
Plastiques	PE (0,376 g)	0	50	50
Autor	Carton (0,333 g)	0	100	0
Autres	Bois (4,701 g)	0	50	50

Tableau 2 – Scénario de fin de vie des emballages

Ce traitement en fin de vie de l'emballage a été modélisé par des données Européenne, des données Françaises n'étant pas disponible.

Lors de l'installation, la pose du câble génère des chutes et un taux de chute de 5 % a été considéré. Cette valeur a été choisie en accord avec le PSR-0001-ed4-FR-2022 11 16. Dans cette étape est pris en compte l'impact :

- De la production des chutes de produit et de leur emballage.
- De la distribution des chutes de produit et de leur emballage.
- De la fin de vie des chutes de produit et de leur emballage.

GGM FO12BxFRLST

UTILISATION

Conformément PSR-0001-ed4-FR-2022 11 16 le produit appartient à la famille « Les câbles à fibres optiques ». Dans ce cas, l'énergie consommée lors de l'étape d'utilisation est liée à l'affaiblissement des signaux transmis dû à la perte d'énergie du signal le long des conducteurs. Cet affaiblissement correspond au rapport entre l'énergie émise et l'énergie reçu. Il est exprimé en dB et dépend du type de fibre, de la longueur d'onde utilisée et de la longueur des fibres optiques.

D'après le PSR-0001-ed4-FR-2022 11 16, l'énergie consommée pendant l'étape d'utilisation peut être soit mesurée, soit déterminée par les normes. Pour cette étude la détermination par les normes a été retenue sur la base des données issues des normes de référence (norme de performance câble IEC 60793, IEC 60794 et norme Ethernet IEEE 802.3).

Type de fibre optique	Longueur d'onde	Puissance consommée	Durée de vie	Taux de service	Nbre de FO dans le câble
Monomode	1310 nm	0,09 μW/m	10 ans	25%	12 FO

Tableau 3 - Données de calcul de la consommation d'électricité

La consommation d'électricité du produit sur la durée de vie de référence est de 85,19 Joules. Le module employé pour modéliser cette consommation énergétique est :

Modèle énergétique	Electricity Mix; Low voltage; 2018; France, FR
--------------------	--

La durée de vie de référence mentionnée dans ce PEP correspond à une donnée moyenne utilisée pour les calculs d'impact, prenant en compte la durée moyenne pendant laquelle le câble est installé dans un système avant d'être considéré en fin de vie. ELLE NE CONSTITUE EN AUCUN CAS une exigence de garantie de durée de vie technique du produit.

Il n'y a pas de maintenance sur ce type de produit.

FIN DE VIE

Le traitement en fin de vie du produit a été modélisé selon le scénario de fin de vie du PSR-0001-ed4-FR-2022 1116:

- Hypothèse de transport national : 1000 km par camion, modélisé par un camion de capacité 27 tonnes (taux de charge de 85 % et taux de retour à vide à 20 %).
- Une étape de broyage / séparation des matières.
- Mise en décharge des matériaux à 50% et incinération à 50 % :
 - o Pour les plastiques (74,258 g).
 - o Pour les matières inertes (Silice: 0,390 g).

1 BÉNÉFICES ET CHARGES NET AU-DELÀ DES FRONTIÈRES DU SYSTÈME (Module D selon l'EN15804)

Conformément aux exigences méthodologiques du PCR ed.4 (cf §2.2.8), les bénéfices du recyclage ayant lieu tout au long du cycle de vie [A1-B7]* ont été considérés dans le Module D. Ces bénéfices correspondent aux impacts évités grâce au recyclage de la matière. Les impacts générés par la production de matière vierge sont comptés négativement.

Pour cette étude, aucun bénéfice lié au module A1-A3 n'est pris en compte.

L'étape d'installation (A5) génère des bénéfices liés au recyclage d'une partie de l'acier contenu dans le conditionnement. On estime ce recyclage à hauteur de 80 %, comme l'indique l'annexe D du PCR ed4. Ainsi, on considère le bénéfice suivant dans le module D :

• - 0,451 g d'Acier (Steel engineering, grade A2; primary production, Europe, RER)

Le module D ne comprend aucune charge ni bénéfice supplémentaire.

*Les déchets de fabrication doivent être considérés comme des coproduits. Les bénéfices et charges nets (Module D) affectés aux coproduits ne peuvent pas être pris en compte. En conséquence, les bénéfices et charges nets en lien aux déchets de fabrication, ne doivent pas être déclarés pour les modules [A1-A3].

1 > IMPACTS ENVIRONNEMENTAUX

Les résultats d'impacts présentés ci-dessous ont été obtenus à l'aide des méthodes définies par le PCR-ed4-FR-2021 09 06 et PSR-0001-ed4-FR-2022 11 16. L'analyse de contribution des flux élémentaires en indicateurs environnementaux relève de calculs issus du logiciel d'analyse du cycle de vie EIME v6.0. Le set d'indicateurs utilisé est le set « Indicators for PEF EF 3.0 (Compliance : PEP ed.4, EN15804+A2) » développé par le département CODDE de Bureau Veritas en conformité avec l'annexe A du PCR-ed4- FR-2021 09 06.

Les impacts du produit de référence (**GGM FO12B3FRLST**) couvrent l'ensemble des références de câbles possédant 12 FO.

IMPACTS ENVIRONNEMENTAUX A L'ÉCHELLE DE L'UNITÉ FONCTIONNELLE

Les indicateurs environnementaux calculés et déclarés dans la fiche PEP pour le produit à l'échelle de l'unité fonctionnelle (soit 1 FO pour 1 mètre de câble) sont :

					INDIC	CATEURS C	BLIGATOI	RES							
Indicateurs d'impact	Unité	Fabrication	Distribution	Installation				Utili	sation				Fin de Vie	Total	Bénéfices et Charges
		A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	В7	B1-B7	C1-C4	(hors D)	D
Changement climatique - total	kg CO2 eq	2,04E-02	4,31E-04	2,18E-03	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	1,32E-07	0,00E+00	1,32E-07	1,09E-02	3,39E-02	-1,17E-04
Changement climatique - combustibles fossiles	kg CO2 eq	2,03E-02	4,31E-04	2,17E-03	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	1,31E-07	0,00E+00	1,31E-07	1,09E-02	3,38E-02	-1,17E-04
Changement climatique - biogénique	kg CO2 eq	8,98E-05	0,00E+00	4,49E-06	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	3,40E-10	0,00E+00	3,40E-10	-9,49E-11	9,43E-05	-2,53E-07
Changement climatique - occupation des sols et transformation de l'occupation des sols	kg CO2 eq	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
Appauvrissement de la couche d'ozone	kg CFC-11 eq	2,73E-09	6,60E-13	1,41E-10	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	1,94E-15	0,00E+00	1,94E-15	7,61E-11	2,94E-09	-1,72E-11
Acidification	mol H+ eq	9,60E-05	2,73E-06	5,94E-06	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	7,63E-10	0,00E+00	7,63E-10	6,21E-06	1,11E-04	-6,89E-07
Eutrophisation eau douce	kg P eq	4,33E-08	1,62E-10	9,60E-09	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	6,27E-12	0,00E+00	6,27E-12	1,05E-07	1,58E-07	-1,77E-10

Eutrophisation aquatique marine	kg N eq	1,49E-05	1,28E-06	1,18E-06	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	1,05E-10	0,00E+00	1,05E-10	1,80E-06	1,91E-05	-6,73E-08
Eutrophisation terrestre	mol N eq	1,64E-04	1,40E-05	1,24E-05	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	1,51E-09	0,00E+00	1,51E-09	2,25E-05	2,13E-04	-7,86E-07
Formation d'ozone photochimique	kg COVNM eq	6,70E-05	3,54E-06	4,58E-06	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	3,11E-10	0,00E+00	3,11E-10	5,45E-06	8,06E-05	-2,74E-07
Epuisement des ressources abiotiques – éléments	kg Sb eq	4,64E-08	1,70E-11	2,33E-09	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	6,23E-14	0,00E+00	6,23E-14	3,97E-11	4,88E-08	-3,67E-08
Epuisement des ressources abiotiques – combustibles fossiles	MJ	6,25E-01	6,01E-03	3,94E-02	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	2,53E-05	0,00E+00	2,53E-05	1,63E-02	6,87E-01	-2,68E-03
Besoin en eau	m3 ea	1,01E-01	1,64E-06	5,17E-03	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	9,54E-09	0,00E+00	9,54E-09	9,25E-04	1,07E-01	-4,84E-05

Flux d'inventaire	Unité	Fabrication	Distribution	Installation				Utilisat	tion				Fin de Vie	Total	Bénéfices et Charges
		A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	В7	B1-B7	C1-C4	(hors D)	D
Utilisation d'énergie primaire renouvelable, à l'exclusion des ressources d'énergie primaire renouvelable utilisées comme matières premières	МЈ	8,70E-03	8,02E-06	4,51E-04	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+ 00	2,34E-06	0,00E+00	2,34E-06	1,59E-04	9,32E-03	-2,12E-05
Utilisation de ressources d'énergie primaire renouvelable comme matières premières	MJ	7,93E-03	0,00E+00	3,97E-04	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+ 00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	8,33E-03	0,00E+00
Utilisation totale de ressources d'énergie primaire renouvelable	MJ	1,66E-02	8,02E-06	8,48E-04	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+ 00	2,34E-06	0,00E+00	2,34E-06	1,59E-04	1,76E-02	-2,12E-05

Utilisation d'énergie primaire non renouvelable, à l'exclusion des ressources d'énergie primaire non renouvelable utilisées comme matières premières	МЈ	5,54E-01	6,01E-03	3,58E-02	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+ 00	2,53E-05	0,00E+00	2,53E-05	1,63E-02	6,12E-01	-2,68E-03
Utilisation de ressources d'énergie primaire non renouvelable comme matières premières	MJ	7,12E-02	0,00E+00	3,56E-03	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+ 00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	7,48E-02	0,00E+00
Utilisation totale de ressources d'énergie primaire non renouvelables	MJ	6,25E-01	6,01E-03	3,94E-02	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	2,53E-05	0,00E+00	2,53E-05	1,63E-02	6,87E-01	-2,68E-03
Utilisation de matières secondaires	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00							
Utilisation de combustibles secondaires renouvelables	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00							
Utilisation de combustibles secondaires non renouvelables	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00							
Utilisation nette d'eau douce	m³	2,36E-03	3,81E-08	1,20E-04	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	2,22E-10	0,00E+00	2,22E-10	2,15E-05	2,50E-03	-1,13E-06
Déchets dangereux éliminés	kg	4,27E-03	0,00E+00	5,21E-04	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	1,96E-09	0,00E+00	1,96E-09	6,26E-03	1,11E-02	-2,90E-03
Déchets non dangereux éliminés	kg	4,26E-03	1,51E-05	1,04E-03	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	1,27E-08	0,00E+00	1,27E-08	6,85E-03	1,22E-02	-9,46E-05
Déchets radioactifs éliminés	kg	9,22E-07	1,08E-08	6,94E-08	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	5,32E-12	0,00E+00	5,32E-12	2,70E-07	1,27E-06	-4,26E-08

Composants destinés à la réutilisation	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
Matières destinées au recyclage	kg	0,00E+00	0,00E+00	3,00E-05	0,00E+00	3,00E-05	0,00E+00								
Matières destinées à la valorisation énergétique	kg	0,00E+00	0,00E+00	1,97E-04	0,00E+00	1,63E-05	2,13E-04	0,00E+00							
Énergie fournie à l'extérieur	MJ	1,02E-05	0,00E+00	1,71E-04	0,00E+00	1,81E-04	0,00E+00								
Teneur en carbone biogénique du produit	kg de C	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
Teneur en carbone biogénique de l'emballage associé	kg de C	-1,63E-01	0,00E+00	1,63E-01	0,00E+00										

					IND	CATEURS	FACULTATI	FS							
Flux d'inventaire	Unité	Fabrication	Distribution	Installation				Utili	isation				Fin de Vie		Bénéfices et Charges
		A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	B7	B1-B7	C1-C4	(hors D)	D
Utilisation totale énergie primaire durant le cycle de vie	MJ	6,41E-01	6,02E-03	4,02E-02	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	2,76E-05	0,00E+00	2,76E-05	1,65E-02	7,04E-01	-2,70E-03
Emissions de particules fines	Décès/Kg eq PM2.5	6,75E-10	2,22E-11	4,08E-11	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	2,95E-14	0,00E+00	2,95E-14	4,19E-11	7,80E-10	-6,46E-11
Rayonnements ionisants, santé humaine	kBq U235 eq	1,29E-02	1,05E-06	6,54E-04	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	3,42E-06	0,00E+00	3,42E-06	1,29E-04	1,37E-02	-2,22E-05
Écotoxicité (eaux douces)	CTUe	1,81E-01	2,90E-04	1,12E-02	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	9,31E-07	0,00E+00	9,31E-07	1,00E-02	2,03E-01	-1,97E-03
Toxicité humaine, effets cancérigènes	CTUh	3,74E-08	7,57E-15	1,87E-09	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	2,20E-17	0,00E+00	2,20E-17	1,20E-12	3,93E-08	-5,78E-13
Toxicité humaine, effets non cancérigènes	CTUh	2,00E-10	8,19E-13	1,37E-11	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	9,52E-16	0,00E+00	9,52E-16	1,26E-11	2,28E-10	-6,90E-12

GGM FO12BxFRLST

Impacts liés à l'occupation des	pas de	2,29E-04	0,00E+00	1,15E-05	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	4,20E-09	0,00E+00	4,20E-09	0,00E+00	2,41E-04	0,00E+00
sols/qualité du sol	dimension														

Tableau 4 - Résultats des indicateurs environnementaux du flux de référence type sur le cycle de vie à l'échelle de l'unité fonctionnelle (1 mètre de câble optique divisé par le nombre de fibres optiques)

Les impacts relatifs aux processus d'installation du produit pourront être complétés par l'utilisateur.

IMPACTS ENVIRONNEMENTAUX A L'ÉCHELLE DE L'ÉQUIPEMENT

Les résultats à l'échelle de l'équipement (Unité Déclarée = 1 mètre de câble avec toutes ses fibres optiques) sont :

				11	NDICATE	JRS OBLI	GATOIRE	S							
Indicateurs d'impact	Unité	Fabrication	Distribution	Installation				Utili	isation				Fin de	TOTAL	Bénéfices
													Vie	(hors D)	et
															Charges
		A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	B7	B1-B7	C1-C4		D
Changement	kg CO2 eq	2,44E-01	5,17E-03	2,61E-02	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	1,58E-06	0,00E+00	1,58E-06	1,31E-01	4,07E-01	-1,41E-03
climatique - total															
Changement	kg CO2 eq	2,43E-01	5,17E-03	2,61E-02	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	1,58E-06	0,00E+00	1,58E-06	1,31E-01	4,05E-01	-1,40E-03
climatique -															
combustibles fossiles															
Changement	kg CO2 eq	1,08E-03	0,00E+00	5,38E-05	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	4,07E-09	0,00E+00	4,07E-09	-1,14E-	1,13E-03	-3,03E-06
climatique -													09		
biogénique															
Changement	kg CO2 eq	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
climatique -															
occupation des sols															
et transformation de															
l'occupation des sols															
Appauvrissement de	kg CFC-11	3,27E-08	7,92E-12	1,69E-09	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	2,33E-14	0,00E+00	2,33E-14	9,13E-10	3,53E-08	-2,07E-10
la couche d'ozone	eq														

mol H+ eq	1,15E-03	3,27E-05	7,12E-05	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	9,15E-09	0,00E+00	9,15E-09	7,45E-05	1,33E-03	-8,27E-06
kg P eq	5,20E-07	1,94E-09	1,15E-07	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	7,52E-11	0,00E+00	7,52E-11	1,26E-06	1,90E-06	-2,12E-09
kg N eq	1,78E-04	1,53E-05	1,42E-05	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	1,26E-09	0,00E+00	1,26E-09	2,16E-05	2,29E-04	-8,08E-07
mol N eq	1,96E-03	1,68E-04	1,49E-04	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	1,81E-08	0,00E+00	1,81E-08	2,70E-04	2,55E-03	-9,43E-06
kg COVNM	8,04E-04	4,25E-05	5,49E-05	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	3,73E-09	0,00E+00	3,73E-09	6,54E-05	9,67E-04	-3,29E-06
eq														
kg Sb eq	5,57E-07	2,04E-10	2,80E-08	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	7,48E-13	0,00E+00	7,48E-13	4,76E-10	5,86E-07	-4,41E-07
MJ	7,50E+00	7,21E-02	4,72E-01	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	3,04E-04	0,00E+00	3,04E-04	1,96E-01	8,24E+00	-3,22E-02
m3 eq	1,21E+00	1,96E-05	6,20E-02	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	1,15E-07	0,00E+00	1,15E-07	1,11E-02	1,29E+00	-5,80E-04
	kg P eq kg N eq mol N eq kg COVNM eq kg Sb eq	kg P eq 5,20E-07 kg N eq 1,78E-04 mol N eq 1,96E-03 kg COVNM 8,04E-04 eq kg Sb eq 5,57E-07 MJ 7,50E+00	kg P eq 5,20E-07 1,94E-09 kg N eq 1,78E-04 1,53E-05 mol N eq 1,96E-03 1,68E-04 kg COVNM eq 8,04E-04 4,25E-05 eq 2,04E-10 MJ 7,50E+00 7,21E-02	kg P eq 5,20E-07 1,94E-09 1,15E-07 kg N eq 1,78E-04 1,53E-05 1,42E-05 mol N eq 1,96E-03 1,68E-04 1,49E-04 kg COVNM eq 8,04E-04 4,25E-05 5,49E-05 eq 5,57E-07 2,04E-10 2,80E-08 MJ 7,50E+00 7,21E-02 4,72E-01	kg P eq 5,20E-07 1,94E-09 1,15E-07 0,00E+00 kg N eq 1,78E-04 1,53E-05 1,42E-05 0,00E+00 mol N eq 1,96E-03 1,68E-04 1,49E-04 0,00E+00 kg COVNM eq 8,04E-04 4,25E-05 5,49E-05 0,00E+00 kg Sb eq 5,57E-07 2,04E-10 2,80E-08 0,00E+00 MJ 7,50E+00 7,21E-02 4,72E-01 0,00E+00	kg P eq 5,20E-07 1,94E-09 1,15E-07 0,00E+00 0,00E+00 kg N eq 1,78E-04 1,53E-05 1,42E-05 0,00E+00 0,00E+00 mol N eq 1,96E-03 1,68E-04 1,49E-04 0,00E+00 0,00E+00 kg COVNM eq 8,04E-04 4,25E-05 5,49E-05 0,00E+00 0,00E+00 kg Sb eq 5,57E-07 2,04E-10 2,80E-08 0,00E+00 0,00E+00 MJ 7,50E+00 7,21E-02 4,72E-01 0,00E+00 0,00E+00	kg P eq 5,20E-07 1,94E-09 1,15E-07 0,00E+00 0,00E+00	kg P eq 5,20E-07 1,94E-09 1,15E-07 0,00E+00 0,00E+00	kg P eq 5,20E-07 1,94E-09 1,15E-07 0,00E+00 0,00E+00	kg P eq 5,20E-07 1,94E-09 1,15E-07 0,00E+00 0,00E+00	kg P eq 5,20E-07 1,94E-09 1,15E-07 0,00E+00 0,00E+00	kg P eq 5,20E-07 1,94E-09 1,15E-07 0,00E+00 0,00E+00	kg P eq 5,20E-07 1,94E-09 1,15E-07 0,00E+00 0,00E+00	kg P eq 5,20E-07 1,94E-09 1,15E-07 0,00E+00 0,00E+00

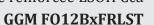
Flux d'inventaire	Unité	Fabrication	Distribution	Installation				Utili	sation				Fin de Vie	Total (hors D)	Bénéfices et Charges
		A1-A3	A4	A5	B1	В2	В3	B4	B5	В6	В7	B1-B7	C1-C4		D
Utilisation d'énergie	MJ	1,04E-01	9,62E-05	5,41E-03	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	2,81E-05	0,00E+00	2,81E-05	1,91E-03	1,12E-01	-2,55E-04
primaire															
renouvelable, à															
l'exclusion des															
ressources d'énergie															
primaire renouvelable															
utilisées comme															
matières premières															
Utilisation de	MJ	9,52E-02	0,00E+00	4,76E-03	0,00E+00	1,00E-01	0,00E+00								
ressources d'énergie															

primaire renouvelable comme matières premières															
Utilisation totale de ressources d'énergie primaire renouvelable	MJ	2,00E-01	9,62E-05	1,02E-02	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	2,81E-05	0,00E+00	2,81E-05		2,12E-01	-2,55E-04
Utilisation d'énergie primaire non renouvelable, à l'exclusion des ressources d'énergie primaire non renouvelable utilisées comme matières premières	MJ	6,64E+00	7,21E-02	4,30E-01	0,00E+00		0,00E+00	0,00E+00	0,00E+00	3,04E-04	0,00E+00	3,04E-04		7,34E+00	
Utilisation de ressources d'énergie primaire non renouvelable comme matières premières	MJ	8,55E-01	0,00E+00	4,27E-02	0,00E+00	8,97E-01	0,00E+00								
Utilisation totale de ressources d'énergie primaire non renouvelables	MJ	7,50E+00	7,21E-02	4,72E-01	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	3,04E-04	0,00E+00	3,04E-04	1,96E-01	8,24E+00	-3,22E-02
Utilisation de matières secondaires	kg	0,00E+00													
Utilisation de combustibles secondaires renouvelables	MJ	0,00E+00													
Utilisation de combustibles secondaires non	MJ	0,00E+00													

renouvelables															
Utilisation nette	m³	2,83E-02	4,57E-07	1,44E-03	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	2,67E-09	0,00E+00	2,67E-09	2,59E-04	3,00E-02	-1,35E-05
d'eau douce															
Déchets dangereux	kg	5,12E-02	0,00E+00	6,25E-03	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	2,35E-08	0,00E+00	2,35E-08	7,52E-02	1,33E-01	-3,48E-02
éliminés															
Déchets non	kg	5,12E-02	1,81E-04	1,25E-02	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	1,52E-07	0,00E+00	1,52E-07	8,22E-02	1,46E-01	-1,14E-03
dangereux éliminés															
Déchets radioactifs	kg	1,11E-05	1,29E-07	8,33E-07	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	6,39E-11	0,00E+00	6,39E-11	3,24E-06	1,53E-05	-5,11E-07
éliminés															
Composants destinés	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
à la réutilisation															
Matières destinées au	kg	0,00E+00	0,00E+00	3,60E-04	0,00E+00	3,60E-04	0,00E+00								
recyclage															
Matières destinées à	kg	0,00E+00	0,00E+00	2,36E-03	0,00E+00	1,95E-04	2,56E-03	0,00E+00							
la valorisation															
énergétique															
Énergie fournie à	MJ	1,23E-04	0,00E+00	2,05E-03	0,00E+00	2,18E-03	0,00E+00								
l'extérieur															
Teneur en carbone	kg de C	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
biogénique du															
produit															
Teneur en carbone	kg de C	-1,95E+00	0,00E+00	1,95E+00	0,00E+00										
biogénique de															
l'emballage associé															

Flux d'inventaire	Unité	Fabrication	Distribution	Installation				Utilis	ation				Fin de Vie	Total (hors D)	Bénéfices et Charges
		A1-A3	A4	A5	B1	C1-C4	В3	D	B5	В6	B7	B1-B7	C1-C4		D
Utilisation totale énergie primaire	MJ	7,70E+00	7,22E-02	4,83E-01	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	3,32E-04	0,00E+00	3,32E-04	1,98E-01	8,45E+00	-3,25E-02
durant le cycle de															

GGM FO12BxFRLST



vie															
Emissions de	Décès/Kg	8,10E-09	2,66E-10	4,89E-10	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	3,55E-13	0,00E+00	3,55E-13	5,02E-10	9,36E-09	-7,75E-10
particules fines	eq PM2.5														
Rayonnements	kBq U235	1,55E-01	1,26E-05	7,85E-03	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	4,10E-05	0,00E+00	4,10E-05	1,54E-03	1,65E-01	-2,67E-04
ionisants, santé	eq														
humaine															
Écotoxicité (eaux	CTUe	2,18E+00	3,48E-03	1,34E-01	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	1,12E-05	0,00E+00	1,12E-05	1,21E-01	2,43E+00	-2,37E-02
douces)															
Toxicité humaine,	CTUh	4,49E-07	9,08E-14	2,25E-08	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	2,65E-16	0,00E+00	2,65E-16	1,44E-11	4,72E-07	-6,93E-12
effets cancérigènes															
Toxicité humaine,	CTUh	2,41E-09	9,83E-12	1,64E-10	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	1,14E-14	0,00E+00	1,14E-14	1,51E-10	2,73E-09	-8,28E-11
effets non															
cancérigènes															
Impacts liés à	pas de	2,75E-03	0,00E+00	1,38E-04	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	5,04E-08	0,00E+00	5,04E-08	0,00E+00	2,89E-03	0,00E+00
l'occupation des	dimension														
sols/qualité du sol															

Tableau 5 - Résultats des indicateurs environnementaux du flux de référence type sur le cycle de vie à l'échelle de l'équipement (unité déclarée = 1 mètre de câble de fibre optiques avec toutes ses fibres optiques)

Les impacts relatifs aux processus d'installation du produit pourront être complétés par l'utilisateur.

IMPACTS ENVIRONNEMENTAUX DES AUTRES PRODUITS DE LA GAMME

Les autres produits de la gamme de câbles optiques de structure libre renforcée LSOH Cca font l'objet de cette fiche PEP. Ils peuvent contenir 4, 6, 8, 12 ou 24 fibres optiques et existent en version multimode 50/125 (OM2, OM3 et OM4) et monomode (OS2).

Les références des câbles optiques de structure libre renforcée LSOH Cca couvertes par ce PEP sont les suivantes :

Référence Article	Description
GGM FO4B3FRLST	Câble 4 fibres OM3 structure libre intérieur/extérieur MDV LSOH euroclasse Cca
GGM FO6B3FRLST	Câble 6 fibres OM3 structure libre intérieur/extérieur MDV LSOH euroclasse Cca
GGM FO8B3FRLST	Câble 8 fibres OM3 structure libre intérieur/extérieur MDV LSOH euroclasse Cca
GGM FO12B3FRLST	Câble 12 fibres OM3 structure libre intérieur/extérieur MDV LSOH euroclasse Cca
GGM FO24B3FRLST	Câble 24 fibres OM3 structure libre intérieur/extérieur MDV LSOH euroclasse Cca
GGM FO4B4FRLST	Câble 4 fibres OM4 structure libre intérieur/extérieur MDV LSOH euroclasse Cca
GGM FO6B4FRLST	Câble 6 fibres OM4 structure libre intérieur/extérieur MDV LSOH euroclasse Cca
GGM FO8B4FRLST	Câble 8 fibres OM4 structure libre intérieur/extérieur MDV LSOH euroclasse Cca
GGM FO12B4FRLST	Câble 12 fibres OM4 structure libre intérieur/extérieur MDV LSOH euroclasse Cca
GGM FO24B4FRLST	Câble 24 fibres OM4 structure libre intérieur/extérieur MDV LSOH euroclasse Cca
GGM FO4B9FRLST	Câble 4 fibres OS2 structure libre intérieur/extérieur MDV LSOH euroclasse Cca
GGM FO6B9FRLST	Câble 6 fibres OS2 structure libre intérieur/extérieur MDV LSOH euroclasse Cca
GGM FO8B9FRLST	Câble 8 fibres OS2 structure libre intérieur/extérieur MDV LSOH euroclasse Cca
GGM FO12B9FRLST	Câble 12 fibres OS2 structure libre intérieur/extérieur MDV LSOH euroclasse Cca
GGM FO24B9FRLST	Câble 24 fibres OS2 structure libre intérieur/extérieur MDV LSOH euroclasse Cca

Tableau 6: Références des câbles optiques de structure libre renforcée LSOH Cca de 4 à 24 FO

IMPACTS ENVIRONNEMENTAUX DES CÂBLES CONTENANT 4 FIBRES OPTIQUES

Les indicateurs environnementaux calculés et déclarés dans la fiche PEP pour les câbles optiques de structure libre renforcée LSOH Cca contenant 4 fibres optiques à l'échelle de l'unité fonctionnelle sont :

					INDIC	ATEURS	OBLIGA1	OIRES							
Indicateurs d'impact	Unité	Fabrication	Distribution	Installation				Ut	tilisation				Fin de Vie	Total	Bénéfices et Charges
		A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	В7	B1-B7	C1-C4	(hors D)	D
Changement climatique - total	kg CO2 eq	5,59E-02	1,28E-03	6,26E-03	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	1,32E-07	0,00E+00	1,32E-07	3,25E-02	9,59E-02	-3,52E-04
Changement climatique - combustibles fossiles	kg CO2 eq	5,57E-02	1,28E-03	6,25E-03	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	1,31E-07	0,00E+00	1,31E-07	3,25E-02	9,58E-02	-3,51E-04
Changement climatique - biogénique	kg CO2 eq	1,52E-04	0,00E+00	7,59E-06	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	3,40E-10	0,00E+00	3,40E-10	-9,49E-11	1,60E-04	-7,58E-07
Changement climatique - occupation des sols et transformation de l'occupation des sols	kg CO2 eq	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
Appauvrissement de la couche d'ozone	kg CFC-11 eq	8,00E-09	1,97E-12	4,13E-10	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	1,94E-15	0,00E+00	1,94E-15	1,93E-10	8,61E-09	-5,17E-11
Acidification	mol H+ eq	2,71E-04	8,13E-06	1,70E-05	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	7,63E-10	0,00E+00	7,63E-10	1,84E-05	3,15E-04	-2,07E-06
Eutrophisation eau douce	kg P eq	6,67E-08	4,81E-10	2,55E-08	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	6,27E-12	0,00E+00	6,27E-12	3,13E-07	4,06E-07	-5,31E-10
Eutrophisation aquatique marine	kg N eq	4,19E-05	3,81E-06	3,40E-06	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	1,05E-10	0,00E+00	1,05E-10	5,35E-06	5,44E-05	-2,02E-07
Eutrophisation terrestre	mol N eq	4,60E-04	4,18E-05	3,57E-05	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	1,51E-09	0,00E+00	1,51E-09	6,69E-05	6,04E-04	-2,36E-06

Formation d'ozone photochimique	kg COVNM eq	1,91E-04	1,05E-05	1,32E-05	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	3,11E-10	0,00E+00	3,11E-10	1,61E-05	2,31E-04	-8,23E-07
Epuisement des ressources abiotiques – éléments	kg Sb eq	1,39E-07	5,05E-11	6,96E-09	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	6,23E-14	0,00E+00	6,23E-14	1,18E-10	1,46E-07	-1,10E-07
Epuisement des ressources abiotiques – combustibles fossiles	MJ	1,67E+00	1,79E-02	1,08E-01	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	2,53E-05	0,00E+00	2,53E-05	4,81E-02	1,84E+00	-8,05E-03
Besoin en eau	m3 eq	1,25E-01	4,87E-06	6,55E-03	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	9,54E-09	0,00E+00	9,54E-09	2,76E-03	1,34E-01	-1,45E-04

Flux d'inventaire	Unité	Fabrication	Distribution	Installation				Ut	tilisation				Fin de Vie	Total	Bénéfices et Charges
		A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	В7	B1-B7	C1-C4	(hors D)	D
Utilisation d'énergie primaire renouvelable, à l'exclusion des ressources d'énergie primaire renouvelable utilisées comme matières premières	MJ	1,37E-02	2,39E-05	7,35E-04	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	2,34E-06	0,00E+00	2,34E-06	4,74E-04	1,50E-02	-6,37E-05
Utilisation de ressources d'énergie primaire renouvelable comme matières premières	MJ	2,38E-02	0,00E+00	1,19E-03	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	2,50E-02	0,00E+00
Utilisation totale de ressources d'énergie primaire renouvelable	MJ	3,75E-02	2,39E-05	1,92E-03	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	2,34E-06	0,00E+00	2,34E-06	4,74E-04	4,00E-02	-6,37E-05

PIP eco PASS POPT

Utilisation d'énergie primaire non renouvelable, à l'exclusion des ressources d'énergie primaire non renouvelable utilisées comme matières premières	MJ	1,45E+00	1,79E-02	9,70E-02	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	2,53E-05	0,00E+00	2,53E-05	4,81E-02	1,62E+00	-8,05E-03
Utilisation de ressources d'énergie primaire non renouvelable comme matières premières	MJ	2,12E-01	0,00E+00	1,06E-02	0,00E+00	2,22E-01	0,00E+00								
Utilisation totale de ressources d'énergie primaire non renouvelables	MJ	1,67E+00	1,79E-02	1,08E-01	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	2,53E-05	0,00E+00	2,53E-05	4,81E-02	1,84E+00	-8,05E-03
Utilisation de matières secondaires	kg	0,00E+00													
Utilisation de combustibles secondaires renouvelables	MJ	0,00E+00													
Utilisation de combustibles secondaires non renouvelables	MJ	0,00E+00													
Utilisation nette d'eau douce	m³	2,90E-03	1,13E-07	1,52E-04	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	2,22E-10	0,00E+00	2,22E-10	6,42E-05	3,12E-03	-3,38E-06
Déchets dangereux éliminés	kg	1,28E-02	0,00E+00	1,55E-03	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	1,96E-09	0,00E+00	1,96E-09	1,86E-02	3,29E-02	-8,69E-03

							_								_
Déchets non dangereux éliminés	kg	1,25E-02	4,50E-05	3,10E-03	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	1,27E-08	0,00E+00	1,27E-08	2,04E-02	3,60E-02	-2,84E-04
Déchets radioactifs éliminés	kg	2,59E-06	3,21E-08	1,99E-07	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	5,32E-12	0,00E+00	5,32E-12	7,98E-07	3,62E-06	-1,28E-07
Composants destinés à la réutilisation	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
Matières destinées au recyclage	kg	0,00E+00	0,00E+00	9,01E-05	0,00E+00	9,01E-05	0,00E+00								
Matières destinées à la valorisation énergétique	kg	0,00E+00	0,00E+00	5,88E-04	0,00E+00	1,63E-05	6,05E-04	0,00E+00							
Énergie fournie à l'extérieur	MJ	3,05E-05	0,00E+00	5,13E-04	0,00E+00	5,44E-04	0,00E+00								
Teneur en carbone biogénique du produit	kg de C	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
Teneur en carbone biogénique de l'emballage associé	kg de C	-4,88E-01	0,00E+00	4,88E-01	0,00E+00										

					INDIC	ATEURS	FACULT	ATIFS							
Flux d'inventaire	Unité	Fabrication	Distribution	Installation				Ut	tilisation				Fin de Vie	Total	Bénéfices et Charges
		A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	В7	B1-B7	C1-C4	(hors D)	D
Utilisation totale énergie primaire durant le cycle de vie	MJ	1,70E+00	1,79E-02	1,10E-01	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	2,76E-05	0,00E+00	2,76E-05	4,86E-02	1,88E+00	-8,11E-03
Emissions de particules fines	Décès/Kg eq PM2.5	1,80E-09	6,61E-11	1,11E-10	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	2,95E-14	0,00E+00	2,95E-14	1,24E-10	2,11E-09	-1,94E-10
Rayonnements ionisants, santé humaine	kBq U235 eq	2,11E-02	3,13E-06	1,07E-03	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	3,42E-06	0,00E+00	3,42E-06	3,83E-04	2,25E-02	-6,67E-05

Horcee Eson Cca	e
M FO12BxFRLST	PA

Écotoxicité (eaux douces)	CTUe	4,95E-01	8,64E-04	3,10E-02	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	9,31E-07	0,00E+00	9,31E-07	2,89E-02	5,55E-01	-5,91E-03
Toxicité humaine, effets cancérigènes	CTUh	1,12E-07	2,25E-14	5,62E-09	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	2,20E-17	0,00E+00	2,20E-17	1,62E-12	1,18E-07	-1,73E-12
Toxicité humaine, effets non cancérigènes	CTUh	5,72E-10	2,44E-12	3,96E-11	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	9,52E-16	0,00E+00	9,52E-16	3,73E-11	6,51E-10	-2,07E-11
Impacts liés à l'occupation des sols/qualité du sol	pas de dimension	2,49E-04	0,00E+00	1,24E-05	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	4,20E-09	0,00E+00	4,20E-09	0,00E+00	2,61E-04	0,00E+00

Tableau 7 : Résultats des indicateurs environnementaux du produit sur le cycle de vie à l'échelle de l'unité fonctionnelle des câbles optiques de structure libre renforcée LSOH Cca contenant 4 fibres optiques

Ces impacts sont à multiplier par 4 et par le nombre de mètres de câble installé afin d'obtenir les impacts à l'échelle de l'équipement.

GGM FO12BxFRLST

IMPACTS ENVIRONNEMENTAUX DES CÂBLES CONTENANT 6 FIBRES OPTIQUES

Les indicateurs environnementaux calculés et déclarés dans la fiche PEP pour les câbles optiques de structure libre renforcée LSOH Cca contenant 6 fibres optiques à l'échelle de l'unité fonctionnelle sont :

				II	NDICATE	URS OBL	IGATOIR	RES							
Indicateurs d'impact	Unité	Fabrication	Distribution	Installation				Utili	sation				Fin de Vie	Total	Bénéfices et Charges
		A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	В7	B1-B7	C1-C4	(hors D)	D
Changement climatique - total	kg CO2 eq	3,81E-02	8,58E-04	4,22E-03	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	1,32E-07	0,00E+00	1,32E-07	2,17E-02	6,49E-02	-2,34E-04
Changement climatique - combustibles fossiles	kg CO2 eq	3,80E-02	8,58E-04	4,21E-03	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	1,31E-07	0,00E+00	1,31E-07	2,17E-02	6,48E-02	-2,34E-04
Changement climatique - biogénique	kg CO2 eq	1,21E-04	0,00E+00	6,04E-06	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	3,40E-10	0,00E+00	3,40E-10	-9,44E-11	1,27E-04	-5,05E-07
Changement climatique - occupation des sols et transformation de l'occupation des sols	kg CO2 eq	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
Appauvrissement de la couche d'ozone	kg CFC-11 eq	5,37E-09	1,31E-12	2,77E-10	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	1,94E-15	0,00E+00	1,94E-15	1,35E-10	5,78E-09	-3,45E-11
Acidification	mol H+ eq	1,84E-04	5,43E-06	1,14E-05	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	7,63E-10	0,00E+00	7,63E-10	1,23E-05	2,13E-04	-1,38E-06
Eutrophisation eau douce	kg P eq	5,49E-08	3,21E-10	1,76E-08	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	6,27E-12	0,00E+00	6,27E-12	2,09E-07	2,82E-07	-3,54E-10
Eutrophisation aquatique marine	kg N eq	2,84E-05	2,54E-06	2,29E-06	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	1,05E-10	0,00E+00	1,05E-10	3,58E-06	3,68E-05	-1,35E-07
Eutrophisation terrestre	mol N eq	3,12E-04	2,79E-05	2,40E-05	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	1,51E-09	0,00E+00	1,51E-09	4,47E-05	4,08E-04	-1,57E-06
Formation d'ozone photochimique	kg COVNM eq	1,29E-04	7,04E-06	8,89E-06	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	3,11E-10	0,00E+00	3,11E-10	1,08E-05	1,56E-04	-5,48E-07
Epuisement des ressources abiotiques – éléments	kg Sb eq	9,26E-08	3,37E-11	4,65E-09	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	6,23E-14	0,00E+00	6,23E-14	7,89E-11	9,74E-08	-7,34E-08

Epuisement des ressources abiotiques – combustibles fossiles	MJ	1,14E+00	1,20E-02	7,35E-02	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	2,53E-05	0,00E+00	2,53E-05	3,22E-02	1,26E+00	-5,37E-03
Besoin en eau	m3 eq	1,13E-01	3,25E-06	5,86E-03	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	9,54E-09	0,00E+00	9,54E-09	1,84E-03	1,21E-01	-9,67E-05

Flux d'inventaire	Unité	Fabrication	Distribution	Installation				Utili	sation				Fin de Vie	Total	Bénéfices et Charges
		A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	В7	B1-B7	C1-C4	(hors D)	D
Utilisation d'énergie primaire renouvelable, à l'exclusion des ressources d'énergie primaire renouvelable utilisées comme matières premières	MJ	1,12E-02	1,60E-05	5,90E-04	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	2,34E-06	0,00E+00	2,34E-06	3,17E-04	1,21E-02	-4,25E-05
Utilisation de ressources d'énergie primaire renouvelable comme matières premières	MJ	1,59E-02	0,00E+00	7,93E-04	0,00E+00	1,67E-02	0,00E+00								
Utilisation totale de ressources d'énergie primaire renouvelable	MJ	2,70E-02	1,60E-05	1,38E-03	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	2,34E-06	0,00E+00	2,34E-06	3,17E-04	2,88E-02	-4,25E-05
Utilisation d'énergie primaire non renouvelable, à l'exclusion des ressources d'énergie primaire non renouvelable utilisées comme matières premières	MJ	1,00E+00	1,20E-02	6,64E-02	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	2,53E-05	0,00E+00	2,53E-05	3,22E-02	1,11E+00	-5,37E-03

Utilisation de ressources d'énergie primaire non renouvelable comme matières premières	МЈ	1,41E-01	0,00E+00	7,07E-03	0,00E+00	1,49E-01	0,00E+00								
Utilisation totale de ressources d'énergie primaire non renouvelables	MJ	1,14E+00	1,20E-02	7,35E-02	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	2,53E-05	0,00E+00	2,53E-05	3,22E-02	1,26E+00	-5,37E-03
Utilisation de matières secondaires	kg	0,00E+00													
Utilisation de combustibles secondaires renouvelables	MJ	0,00E+00													
Utilisation de combustibles secondaires non renouvelables	MJ	0,00E+00													
Utilisation nette d'eau douce	m³	2,63E-03	7,58E-08	1,36E-04	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	2,22E-10	0,00E+00	2,22E-10	4,28E-05	2,81E-03	-2,25E-06
Déchets dangereux éliminés	kg	8,52E-03	0,00E+00	1,04E-03	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	1,96E-09	0,00E+00	1,96E-09	1,24E-02	2,20E-02	-5,80E-03
Déchets non dangereux éliminés	kg	8,37E-03	3,01E-05	2,07E-03	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	1,27E-08	0,00E+00	1,27E-08	1,36E-02	2,41E-02	-1,89E-04
Déchets radioactifs éliminés	kg	1,76E-06	2,14E-08	1,34E-07	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	5,32E-12	0,00E+00	5,32E-12	5,34E-07	2,45E-06	-8,52E-08
Composants destinés à la réutilisation	kg	0,00E+00													
Matières destinées au recyclage	kg	0,00E+00	0,00E+00	6,01E-05	0,00E+00	6,01E-05	0,00E+00								
Matières destinées à la valorisation énergétique	kg	0,00E+00	0,00E+00	3,93E-04	0,00E+00	1,62E-05	4,09E-04	0,00E+00							

PLP eco PASS POPT

GGM FO12BxFRLST

Énergie fournie à l'extérieur	MJ	2,04E-05	0,00E+00	3,42E-04	0,00E+00	3,63E-04	0,00E+00								
Teneur en carbone biogénique du produit	kg de C	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
Teneur en carbone biogénique de l'emballage associé	kg de C	-3,25E-01	0,00E+00	3,25E-01	0,00E+00										

					INDICAT	EURS FA	CULTATII	FS							
Flux d'inventaire	Unité	Fabrication	Distribution	Installation				Utili	sation				Fin de Vie	Total	Bénéfices et Charges
		A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	В7	B1-B7	C1-C4	(hors D)	D
Utilisation totale énergie primaire durant le cycle de vie	MJ	1,17E+00	1,20E-02	7,48E-02	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	2,76E-05	0,00E+00	2,76E-05	3,25E-02	1,29E+00	-5,41E-03
Emissions de particules fines	Décès/Kg eq PM2.5	1,24E-09	4,41E-11	7,59E-11	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	2,95E-14	0,00E+00	2,95E-14	8,31E-11	1,44E-09	-1,29E-10
Rayonnements ionisants, santé humaine	kBq U235 eq	1,69E-02	2,09E-06	8,61E-04	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	3,42E-06	0,00E+00	3,42E-06	2,56E-04	1,81E-02	-4,45E-05
Écotoxicité (eaux douces)	CTUe	3,38E-01	5,77E-04	2,11E-02	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	9,31E-07	0,00E+00	9,31E-07	1,95E-02	3,79E-01	-3,94E-03
Toxicité humaine, effets cancérigènes	CTUh	7,49E-08	1,51E-14	3,75E-09	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	2,20E-17	0,00E+00	2,20E-17	1,40E-12	7,86E-08	-1,16E-12
Toxicité humaine, effets non cancérigènes	CTUh	3,86E-10	1,63E-12	2,66E-11	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	9,52E-16	0,00E+00	9,52E-16	2,49E-11	4,39E-10	-1,38E-11
Impacts liés à l'occupation des sols/qualité du sol	pas de dimension	2,39E-04	0,00E+00	1,19E-05	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	4,20E-09	0,00E+00	4,20E-09	0,00E+00	2,51E-04	0,00E+00

Tableau 8 : Résultats des indicateurs environnementaux du produit sur le cycle de vie à l'échelle de l'unité fonctionnelle des câbles optiques de structure libre renforcée LSOH Cca contenant 6 fibres optiques

Ces impacts sont à multiplier par 6 et par le nombre de mètres de câble installé afin d'obtenir les impacts à l'échelle de l'équipement.

IMPACTS ENVIRONNEMENTAUX DES CÂBLES CONTENANT 8 FIBRES OPTIQUES

Les indicateurs environnementaux calculés et déclarés dans la fiche PEP pour les câbles optiques de structure libre renforcée LSOH Cca contenant 8 fibres optiques à l'échelle de l'unité fonctionnelle sont :

					INDIC	CATEURS (OBLIGATO	IRES							
Indicateurs d'impact	Unité	Fabrication	Distribution	Installation				Utili	isation				Fin de Vie	Total	Bénéfices et Charges
		A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	В7	B1-B7	C1-C4	(hors D)	D
Changement climatique - total	kg CO2 eq	2,92E-02	6,45E-04	3,20E-03	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	1,32E-07	0,00E+00	1,32E-07	1,63E-02	4,94E-02	-1,76E-04
Changement climatique - combustibles fossiles	kg CO2 eq	2,91E-02	6,45E-04	3,19E-03	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	1,31E-07	0,00E+00	1,31E-07	1,63E-02	4,93E-02	-1,75E-04
Changement climatique - biogénique	kg CO2 eq	1,05E-04	0,00E+00	5,26E-06	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	3,40E-10	0,00E+00	3,40E-10	-9,49E- 11	1,11E-04	-3,79E-07
Changement climatique - occupation des sols et transformation de l'occupation des sols	kg CO2 eq	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
Appauvrissement de la couche d'ozone	kg CFC-11 eq	4,04E-09	9,87E-13	2,09E-10	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	1,94E-15	0,00E+00	1,94E-15	1,05E-10	4,36E-09	-2,58E-11
Acidification	mol H+ eq	1,40E-04	4,08E-06	8,69E-06	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	7,63E-10	0,00E+00	7,63E-10	9,26E-06	1,62E-04	-1,03E-06
Eutrophisation eau douce	kg P eq	4,94E-08	2,42E-10	1,36E-08	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	6,27E-12	0,00E+00	6,27E-12	1,57E-07	2,20E-07	-2,66E-10
Eutrophisation aquatique marine	kg N eq	2,16E-05	1,91E-06	1,74E-06	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	1,05E-10	0,00E+00	1,05E-10	2,69E-06	2,79E-05	-1,01E-07

Eutrophisation terrestre	mol N eq	2,38E-04	2,10E-05	1,82E-05	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	1,51E-09	0,00E+00	1,51E-09	3,36E-05	3,10E-04	-1,18E-06
Formation d'ozone photochimique	kg COVNM eq	9,79E-05	5,29E-06	6,73E-06	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	3,11E-10	0,00E+00	3,11E-10	8,12E-06	1,18E-04	-4,11E-07
Epuisement des ressources abiotiques – éléments	kg Sb eq	6,95E-08	2,53E-11	3,49E-09	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	6,23E-14	0,00E+00	6,23E-14	5,93E-11	7,31E-08	-5,51E-08
Epuisement des ressources abiotiques – combustibles fossiles	MJ	8,86E-01	8,98E-03	5,65E-02	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	2,53E-05	0,00E+00	2,53E-05	2,43E-02	9,75E-01	-4,02E-03
Besoin en eau	m3 eq	1,07E-01	2,45E-06	5,51E-03	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	9,54E-09	0,00E+00	9,54E-09	1,38E-03	1,14E-01	-7,25E-05

Flux d'inventaire	Unité	Fabrication	Distribution	Installation				Utili	sation				Fin de Vie	Total	Bénéfices et Charges
		A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	В7	B1-B7	C1-C4	(hors D)	D
Utilisation d'énergie primaire renouvelable, à l'exclusion des ressources d'énergie primaire renouvelable utilisées comme matières premières	MJ	1,00E-02	1,20E-05	5,25E-04	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	2,34E-06	0,00E+00	2,34E-06	2,38E-04	1,08E-02	-3,19E-05

PIP eco PASS POPT

Utilisation de ressources d'énergie primaire renouvelable comme matières premières	MJ	1,19E-02	0,00E+00	5,95E-04	0,00E+00	1,25E-02	0,00E+00								
Utilisation totale de ressources d'énergie primaire renouvelable	MJ	2,19E-02	1,20E-05	1,12E-03	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	2,34E-06	0,00E+00	2,34E-06	2,38E-04	2,33E-02	-3,19E-05
Utilisation d'énergie primaire non renouvelable, à l'exclusion des ressources d'énergie primaire non renouvelable utilisées comme matières premières	MJ	7,79E-01	8,98E-03	5,11E-02	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	2,53E-05	0,00E+00	2,53E-05	2,43E-02	8,64E-01	-4,02E-03
Utilisation de ressources d'énergie primaire non renouvelable comme matières premières	MJ	1,06E-01	0,00E+00	5,32E-03	0,00E+00	1,12E-01	0,00E+00								
Utilisation totale de ressources d'énergie primaire non renouvelables	MJ	8,86E-01	8,98E-03	5,65E-02	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	2,53E-05	0,00E+00	2,53E-05	2,43E-02	9,75E-01	-4,02E-03
Utilisation de matières secondaires	kg	0,00E+00													

Utilisation de combustibles secondaires renouvelables	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
Utilisation de combustibles secondaires non renouvelables	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
Utilisation nette d'eau douce	m³	2,49E-03	5,69E-08	1,28E-04	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	2,22E-10	0,00E+00	2,22E-10	3,22E-05	2,65E-03	-1,69E-06
Déchets dangereux éliminés	kg	6,21E-03	0,00E+00	7,79E-04	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	1,96E-09	0,00E+00	1,96E-09	9,35E-03	1,63E-02	-4,35E-03
Déchets non dangereux éliminés	kg	6,32E-03	2,26E-05	1,56E-03	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	1,27E-08	0,00E+00	1,27E-08	1,02E-02	1,81E-02	-1,42E-04
Déchets radioactifs éliminés	kg	1,34E-06	1,61E-08	1,02E-07	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	5,32E-12	0,00E+00	5,32E-12	4,02E-07	1,86E-06	-6,39E-08
Composants destinés à la réutilisation	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
Matières destinées au recyclage	kg	0,00E+00	0,00E+00	4,51E-05	0,00E+00	4,51E-05	0,00E+00								
Matières destinées à la valorisation énergétique	kg	0,00E+00	0,00E+00	2,95E-04	0,00E+00	1,63E-05	3,11E-04	0,00E+00							
Énergie fournie à l'extérieur	MJ	1,53E-05	0,00E+00	2,57E-04	0,00E+00	2,72E-04	0,00E+00								
Teneur en carbone biogénique du produit	kg de C	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
Teneur en carbone biogénique de l'emballage associé	kg de C	-2,44E-01	0,00E+00	2,44E-01	0,00E+00										

PIP eco PASS POPT

GGM FO12BxFRLST

					INDI	CATEURS	FACULTA	TIFS							
Flux d'inventaire	Unité	Fabrication	Distribution	Installation				Utili	lisation				Fin de Vie	Total	Bénéfices et Charges
		A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	В7	B1-B7	C1-C4	(hors D)	D
Utilisation totale énergie primaire durant le cycle de vie	MJ	9,08E-01	8,99E-03	5,76E-02	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	2,76E-05	0,00E+00	2,76E-05	2,45E-02	9,99E-01	-4,06E-03
Emissions de particules fines	Décès/Kg eq PM2.5	1 9 5XF-1() 1	3,32E-11	5,84E-11	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	2,95E-14	0,00E+00	2,95E-14	6,25E-11	1,11E-09	-9,68E-11
Rayonnements ionisants, santé humaine	kBq U235 eq	1,51E-02	1,57E-06	7,65E-04	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	3,42E-06	0,00E+00	3,42E-06	1,92E-04	1,60E-02	-3,34E-05
Écotoxicité (eaux douces)	CTUe	2,59E-01	4,34E-04	1,61E-02	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	9,31E-07	0,00E+00	9,31E-07	1,48E-02	2,91E-01	-2,96E-03
Toxicité humaine, effets cancérigènes	CTUh	5,62E-08	1,13E-14	2,81E-09	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	2,20E-17	0,00E+00	2,20E-17	1,30E-12	5,90E-08	-8,67E-13
Toxicité humaine, effets non cancérigènes	CTUh	2,93E-10	1,22E-12	2,02E-11	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	9,52E-16	0,00E+00	9,52E-16	1,88E-11	3,33E-10	-1,04E-11
Impacts liés à l'occupation des sols/qualité du sol	pas de dimension	2,34E-04	0,00E+00	1,17E-05	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	4,20E-09	0,00E+00	4,20E-09	0,00E+00	2,46E-04	0,00E+00

Tableau 9 : Résultats des indicateurs environnementaux du produit sur le cycle de vie à l'échelle de l'unité fonctionnelle des câbles optiques de structure libre renforcée LSOH Cca contenant 8 fibres optiques

Ces impacts sont à multiplier par 8 et par le nombre de mètres de câble installé afin d'obtenir les impacts à l'échelle de l'équipement.

IMPACTS ENVIRONNEMENTAUX DES CÂBLES CONTENANT 24 FIBRES OPTIQUES

Les indicateurs environnementaux calculés et déclarés dans la fiche PEP pour les câbles optiques de structure libre renforcée LSOH Cca contenant 24 fibres optiques à l'échelle de l'unité fonctionnelle sont :

				IND	ICATEU	RS OBLIG	ATOIRE	S							
Indicateurs d'impact	Unité	Fabrication	Distribution	Installation				Util	isation				Fin de Vie	Total	Bénéfices et Charges
		A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	B7	B1-B7	C1-C4	(hors D)	D
Changement climatique - total	kg CO2 eq	1,30E-02	2,54E-04	1,28E-03	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	1,32E-07	0,00E+00	1,32E-07	6,52E-03	2,11E-02	-5,86E-05
Changement climatique - combustibles fossiles	kg CO2 eq	1,29E-02	2,54E-04	1,28E-03	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	1,31E-07	0,00E+00	1,31E-07	6,52E-03	2,10E-02	-5,85E-05
Changement climatique - biogénique	kg CO2 eq	7,63E-05	0,00E+00	3,81E-06	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	3,40E-10	0,00E+00	3,40E-10	-9,49E-11	8,01E-05	-1,26E-07
Changement climatique - occupation des sols et transformation de l'occupation des sols	kg CO2 eq	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
Appauvrissement de la couche d'ozone	kg CFC-11 eq	1,73E-09	3,90E-13	8,97E-11	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	1,94E-15	0,00E+00	1,94E-15	5,22E-11	1,88E-09	-8,62E-12
Acidification	mol H+ eq	6,11E-05	1,61E-06	3,66E-06	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	7,63E-10	0,00E+00	7,63E-10	3,72E-06	7,01E-05	-3,45E-07
Eutrophisation eau douce	kg P eq	3,95E-08	9,54E-11	6,20E-09	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	6,27E-12	0,00E+00	6,27E-12	6,26E-08	1,08E-07	-8,85E-11
Eutrophisation aquatique marine	kg N eq	9,36E-06	7,55E-07	7,01E-07	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	1,05E-10	0,00E+00	1,05E-10	1,08E-06	1,19E-05	-3,37E-08
Eutrophisation terrestre	mol N eq	1,03E-04	8,28E-06	7,45E-06	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	1,51E-09	0,00E+00	1,51E-09	1,35E-05	1,32E-04	-3,93E-07
Formation d'ozone photochimique	kg COVNM eq	4,21E-05	2,09E-06	2,76E-06	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	3,11E-10	0,00E+00	3,11E-10	3,28E-06	5,03E-05	-1,37E-07

Epuisement des ressources abiotiques – éléments	kg Sb eq	2,34E-08	1,00E-11	1,17E-09	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	6,23E-14	0,00E+00	6,23E-14	2,37E-11	2,46E-08	-1,84E-08
Epuisement des ressources abiotiques – combustibles fossiles	MJ	4,15E-01	3,55E-03	2,49E-02	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	2,53E-05	0,00E+00	2,53E-05	9,84E-03	4,54E-01	-1,34E-03
Besoin en eau	m3 eq	9,67E-02	9,65E-07	4,89E-03	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	9,54E-09	0,00E+00	9,54E-09	5,52E-04	1,02E-01	-2,42E-05

Flux d'inventaire	Unité	Fabrication	Distribution	Installation				Util	isation				Fin de Vie	Total	Bénéfices et Charges
		A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	В7	B1-B7	C1-C4	(hors D)	D
Utilisation d'énergie primaire renouvelable, à l'exclusion des ressources d'énergie primaire renouvelable utilisées comme matières premières	MJ	7,84E-03	4,73E-06	4,01E-04	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	2,34E-06	0,00E+00	2,34E-06	9,46E-05	8,34E-03	-1,06E-05
Utilisation de ressources d'énergie primaire renouvelable comme matières premières	MJ	3,97E-03	0,00E+00	1,98E-04	0,00E+00	4,17E-03	0,00E+00								
Utilisation totale de ressources d'énergie primaire renouvelable	MJ	1,18E-02	4,73E-06	5,99E-04	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	2,34E-06	0,00E+00	2,34E-06	9,46E-05	1,25E-02	-1,06E-05

Utilisation d'énergie primaire non renouvelable, à l'exclusion des ressources d'énergie primaire non renouvelable utilisées comme matières premières	MJ	3,69E-01	3,55E-03	2,26E-02	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	2,53E-05	0,00E+00	2,53E-05	9,84E-03	4,05E-01	-1,34E-03
Utilisation de ressources d'énergie primaire non renouvelable comme matières premières	MJ	4,61E-02	0,00E+00	2,30E-03	0,00E+00	4,84E-02	0,00E+00								
Utilisation totale de ressources d'énergie primaire non renouvelables	MJ	4,15E-01	3,55E-03	2,49E-02	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	2,53E-05	0,00E+00	2,53E-05	9,84E-03	4,54E-01	-1,34E-03
Utilisation de matières secondaires	kg	0,00E+00													
Utilisation de combustibles secondaires renouvelables	MJ	0,00E+00													
Utilisation de combustibles secondaires non renouvelables	MJ	0,00E+00													
Utilisation nette d'eau douce	m³	2,25E-03	2,25E-08	1,14E-04	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	2,22E-10	0,00E+00	2,22E-10	1,29E-05	2,38E-03	-5,63E-07
Déchets dangereux éliminés	kg	2,22E-03	0,00E+00	2,93E-04	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	1,96E-09	0,00E+00	1,96E-09	3,75E-03	6,26E-03	-1,45E-03
Déchets non dangereux éliminés	kg	2,70E-03	8,92E-06	5,82E-04	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	1,27E-08	0,00E+00	1,27E-08	4,08E-03	7,37E-03	-4,73E-05

Déchets radioactifs éliminés	kg	5,87E-07	6,36E-09	4,24E-08	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	5,32E-12	0,00E+00	5,32E-12	1,62E-07	7,98E-07	-2,13E-08
Composants destinés à la réutilisation	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
Matières destinées au recyclage	kg	0,00E+00	0,00E+00	1,50E-05	0,00E+00	1,50E-05	0,00E+00								
Matières destinées à la valorisation énergétique	kg	0,00E+00	0,00E+00	9,87E-05	0,00E+00	1,63E-05	1,15E-04	0,00E+00							
Énergie fournie à l'extérieur	MJ	6,20E-06	0,00E+00	8,56E-05	0,00E+00	9,18E-05	0,00E+00								
Teneur en carbone biogénique du produit	kg de C	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
Teneur en carbone biogénique de l'emballage associé	kg de C	-8,13E-02	0,00E+00	8,13E-02	0,00E+00										

				IN	DICATEU	RS FACL	ILTATIFS								
Flux d'inventaire	Unité	Fabrication	Distribution	Installation				Util	isation				Fin de Vie	Total	Bénéfices et Charges
		A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	В7	B1-B7	C1-C4	(hors D)	D
Utilisation totale énergie primaire durant le cycle de vie	MJ	4,27E-01	3,55E-03	2,55E-02	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	2,76E-05	0,00E+00	2,76E-05	9,94E-03	4,66E-01	-1,35E-03
Emissions de particules fines	Décès/Kg eq PM2.5	4,46E-10	1,31E-11	2,61E-11	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	2,95E-14	0,00E+00	2,95E-14	2,51E-11	5,10E-10	-3,23E-11
Rayonnements ionisants, santé humaine	kBq U235 eq	1,14E-02	6,19E-07	5,75E-04	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	3,42E-06	0,00E+00	3,42E-06	7,68E-05	1,21E-02	-1,11E-05
Écotoxicité (eaux douces)	CTUe	1,19E-01	1,71E-04	7,05E-03	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	9,31E-07	0,00E+00	9,31E-07	6,21E-03	1,32E-01	-9,86E-04

GGM FO12BxFRLST

Toxicité humaine, effets cancérigènes	CTUh	2,30E-08	4,47E-15	1,15E-09	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	2,20E-17	0,00E+00	2,20E-17	1,11E-12	2,41E-08	-2,89E-13
Toxicité humaine, effets non cancérigènes	CTUh	1,27E-10	4,83E-13	8,24E-12	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	9,52E-16	0,00E+00	9,52E-16	7,60E-12	1,43E-10	-3,45E-12
Impacts liés à l'occupation des sols/qualité du sol	pas de dimension	2,28E-04	0,00E+00	1,14E-05	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	4,20E-09	0,00E+00	4,20E-09	0,00E+00	2,39E-04	0,00E+00

Tableau 10 : Résultats des indicateurs environnementaux du produit sur le cycle de vie à l'échelle de l'unité fonctionnelle des câbles optiques de structure libre renforcée LSOH Cca contenant 24 fibres optiques

Ces impacts sont à multiplier par 24 et par le nombre de mètres de câble installé afin d'obtenir les impacts à l'échelle de l'équipement.