TeSys U AS-interface

Guide de démarrage rapide

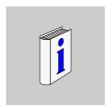
01/2010

Le présent document comprend des descriptions générales et/ou des caractéristiques techniques générales sur la performance des produits auxquels il se réfère. Le présent document ne peut être utilisé pour déterminer l'aptitude ou la fiabilité de ces produits pour des applications utilisateur spécifiques et n'est pas destiné à se substituer à cette détermination. Il appartient à chaque utilisateur ou intégrateur de réaliser, sous sa propre responsabilité, l'analyse de risques complète et appropriée, et d'évaluer et de tester les produits dans le contexte de leur l'application ou utilisation spécifique. Ni la société Schneider Electric, ni aucune de ses filiales ou sociétés dans lesquelles elle détient une participation, ne peut être tenue pour responsable de la mauvaise utilisation des informations contenues dans le présent document. Si vous avez des suggestions, des améliorations ou des corrections à apporter à cette publication, veuillez nous en informer.

Aucune partie de ce document ne peut être reproduite sous quelque forme ou par quelque moyen que ce soit, électronique, mécanique ou photocopie, sans l'autorisation écrite expresse de Schneider Electric.

Toutes les réglementations locales, régionales et nationales en matière de sécurité doivent être respectées lors de l'installation et de l'utilisation de ce produit. Pour des raisons de sécurité et afin de garantir la conformité aux données système documentées, seul le fabricant est habilité à effectuer des réparations sur les composants.

Lorsque des équipements sont utilisés pour des applications présentant des exigences de sécurité techniques, suivez les instructions appropriées.


La non-utilisation du logiciel Schneider Electric ou d'un logiciel approuvé avec nos produits peut entraîner des blessures, des dommages ou un fonctionnement incorrect.

Le non-respect de cette consigne peut entraîner des lésions corporelles ou des dommages matériels. © 2010 Schneider Electric. Tous droits réservés.

Table des matières

	A propos de ce manuel	4
Chapitre 1	Présentation	5
-	Présentation de l'application	5
	Solution Schneider Electric avec démarreur Tesys U	6
Chapitre 2	Configuration du TeSysU	9
•	Réglages LUCA12BL et LUCD18BL	9
	Connecteurs ASILUFC51 et réglages d'adresse	10
Chapitre 3	Configuration d'un réseau de communication vers un automate	11
-	3.1 Configuration du TeSys U sur le réseau AS-interface pour un automate Twido	
	(avec TwidoSoft)	12
	3.2 Configuration du TeSys U sur le réseau AS-interface pour un automate Premium	
	(avec Unity Pro)	15
	3.3 Mise en place de la solution TeSys U avec AS-i	18

A propos de ce manuel

Présentation

Objectif du document

Le guide de démarrage rapide utilise un exemple d'application pour décrire les différentes étapes afin d'installer rapidement, de configurer et de commander le TeSys U. Avec ce guide de démarrage rapide, vous pouvez facilement configurer un réseau de communication AS-interface, sous réserve que vous connaissiez les bases des automates et des logiciels d'application (TwidoSoft, Unity Pro). L'exécution de cette tâche ne nécessite pas d'autres documents.

Pour plus de détails sur les autres fonctionnalités des démarreurs TeSys U, consultez les documents associés indiqués ci-dessous.

Champ d'application

Les informations décrites dans ce guide de démarrage rapide sont valables pour le matériel et les logiciels utilisés dans l'exemple d'application fourni. Les mêmes procédures s'appliquent pour différentes versions du matériel et des logiciels fournis, sous réserve d'utiliser des versions compatibles.

Document à consulter

Titre de documentation	Référence
Manuel d'utilisation du module de Communication AS-i TeSys U ASILUFC5-ASILUFC51	1639093
Mode d'emploi des démarreurs TeSys U LUB/LUS	1629984
Mode d'emploi LUFC• - ASILUF - LULC•	1743239

Vous pouvez télécharger ces publications et autres informations techniques depuis notre site web à l'adresse : www.schneider-electric.com.

Commentaires utilisateur

Envoyez vos commentaires à l'adresse e-mail techpub@schneider-electric.com

Présentation

1

Contenu de ce chapitre

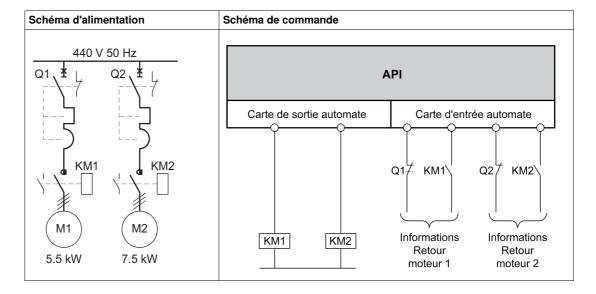
Ce chapitre contient les sujets suivants :

Sujet	Page
Présentation de l'application	5
Solution Schneider Electric avec démarreur Tesys U	6

Présentation de l'application

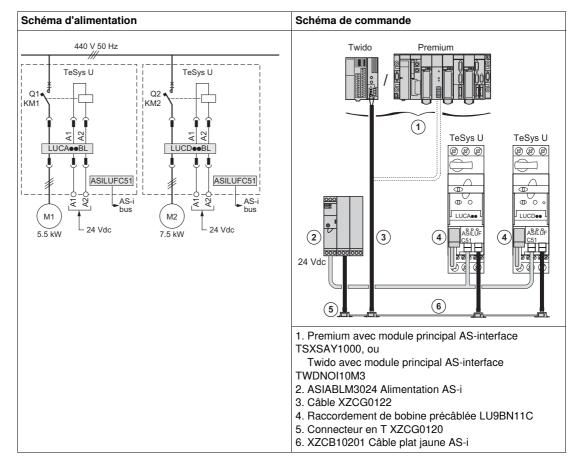
Présentation

L'exemple d'application vous pemet de définir les démarreurs directs (Direct On Line - DOL) étape par étape, afin de :


- fournir une protection magnéto-thermique
- commander le moteur et
- obtenir un retour du contacteur et un retour de déclenchement du disjoncteur.

Description de l'application

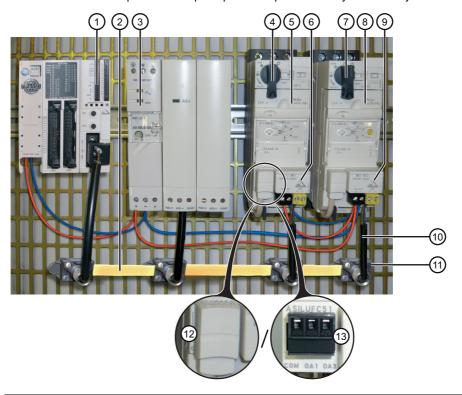
- Moteur 1 (M1): moteur triphasé, classe 10, 5,5 kW (7,4 hp) à 440 V, 50 Hz, courant nominal En = 10,5 A, démarrage direct.
- Moteur 2 (M2): moteur triphasé, classe 20, 7,5 kW (10,1 cv) à 440 V, 50 Hz, courant nominal En = 14,7 A, démarrage direct avec contrôle à distance de la charge du moteur.


Solution traditionnelle

Le schéma ci-dessous illustre le câblage utilisé dans la solution traditionnelle : toutes les informations de commande et de retour sont câblées à travers un automate.

Solution Schneider Electric avec démarreur Tesys U

Schémas d'alimentation et de commande dans la solution Schneider Electric


Unités de contrôle utilisées dans la solution Schneider Electric

La solution Schneider Electric présentée dans ce guide de démarrage rapide utilise le TeSys U pour répondre aux différents besoins des clients.

- LUCA12BL est une unité de contrôle standard utilisée avec le moteur 1 pour les besoins de base :
 - Commande à distance un moteur (démarrage/arrêt)
 - Fournit des informations d'état (prêt, en marche, défaut)
- LUCD18BL est une unité de contrôle avancée utilisée avec le moteur 2 pour les mêmes besoins que les besoins standards, et équipée d'un bouton d'essai simulant le déclenchement en cas de surcharge thermique.

Architecture du système TeSys U

L'architecture suivante présente les principaux composants du système TeSys U monté sur une plaque :

Légende	Référence commerciale	Description	
1	Twido	Programmable Logic Controller (automate programmable industriel)	
	Premium		
2	XZCB10201	Câble plat jaune AS-interface, 20 m maximum (65,6 ft), à couper en fonction de la taille du réseau	
3	ASIABLM3024	Alimentation AS-interface fournissant: • 24 V CC, 3 A, 72 W pour la sortie auxiliaire, et • 30 V CC, 2,4 A, 72 W pour l'AS-i	
4	LUB12	Base puissance TeSys U	
5	LUCA12BL	Unité de contrôle standard	
6, 9	ASILUFC51	Module de communication AS-interface	
7	LUB32	Base puissance TeSys U	
8	LUCD18BL	Unité de contrôle avancée	
10	XZCG0122	Câble de 2 m (6,6 ft) avec connecteur vissable pour le raccordement au câble plat et extrémité dénudée pour le branchement électrique	
11	XZCG0120	Connecteur en T pour le raccordement au câble plat pour l'AS-interface	
12	LU9BN11C	Raccordement de bobine précâblée (en option) ou	
13	Raccordement standard fourni avec ASILUFC51	Bornier enfichable pour contrôle fil à fil des bornes A1/A2	

Outils logiciels

Les outils logiciels suivants doivent être utilisés pour définir les applications. Leur utilisation nécessite une connaissance de base.

Référence commerciale	Description		
TWDSPU1002V10M	TwidoSoft V3.2	Logiciel de programmation pour automate	
TWD BTF U10M	TwidoSuite V2.0	Twido	
UNY SPU EFP CD40	Unity Pro Extra Large Log	Unity Pro Extra Large Logiciel de programmation V4.0 pour automate Premium	

Conditions réseau

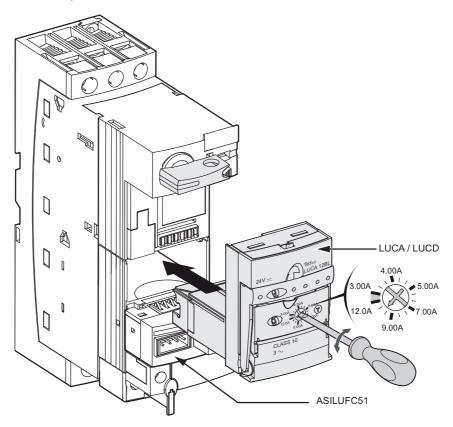
Protocole: AS-interface

Adresses:

1A pour moteur 1 TeSys U2A pour moteur 2 TeSys U

8 1672615 01/2010

Contenu de ce chapitre


Ce chapitre contient les sujets suivants :

Sujet	Page
Réglages LUCA12BL et LUCD18BL	9
Connecteurs ASILUFC51 et réglages d'adresse	10

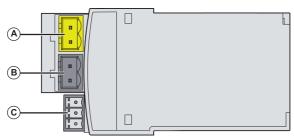
Réglages LUCA12BL et LUCD18BL

Régler le courant sur les unités de contrôle

La figure ci-dessous illustre comment régler le courant sur l'unité de contrôle à l'aide d'un tournevis (ici LUCA12BL) :

Valeurs de réglage du courant

Le tableau ci-dessous présente les réglages pour le LUCA12BL (unité standard) et le LUCD18BL (unité avancée) :

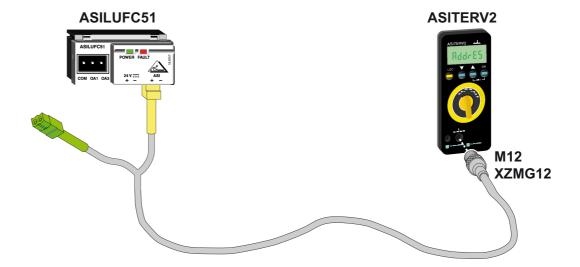

Unité de contrôle	Moteur	Plage de réglage du courant	Puissance nominale du moteur	Valeur de réglage du courant = Courant nominal du moteur
LUCA12BL	M1	312 A	5.5 kW (7.5 hp)	10.5 A
LUCD18BL	M2	4.418 A	7.5 kW (10 hp)	14.7 A

1672615 01/2010

Connecteurs ASILUFC51 et réglages d'adresse

Présentation

Les connecteurs sous le module de communication ASILUFC51 sont les suivants :


- A Connecteur jaune pour le raccordement au réseau AS-interface ou à la borne d'adressage ASITERV2
- B Connecteur noir pour le raccordement à la sortie auxiliaire CC 24 V
- C Sorties pour commander l'automate-démarreur

Adresse

Attribuez une adresse de 1A à 31A et de 1B à 31B à l'aide de la borne d'adressage ASITERV2. L'adresse 0 (zéro) n'est pas autorisée et constitue une configuration invalide.

Pour attribuer les addresses 1A et 2A, procédez de la manière suivante :

Étape	Action
1	Branchez et vissez le connecteur mâle M12 du câble XZMG12 au connecteur M12 de la borne d'adressage ASITERV2.
2	Branchez le connecteur enfichable jaune du câble XZMG12 au connecteur de bus jaune AS-i sur le ASILUFC51. Voir figure ci-dessous. NOTE: le connecteur enfichable vert du câble XZMG12 n'est pas utilisé.
3	Sur le ASITERV2, tournez l'interrupteur rotatif en position ADDR puis appuyez sur OK. Pendant l'initialisation, SEArcH s'affiche. Résultat : l'adresse de l'esclave branché s'affiche à l'écran. L'adresse par défaut est 0.
4	Appuyez sur les flèches vers le haut et vers le bas pour définir l'adresse sur 1. NOTE: A s'affiche à l'écran après l'adresse pour indiquer l'attribution du canal car l'esclave dispose d'un adressage avancé.
5	Appuyez sur OK pour appliquer le réglage. Pendant la transmission, ProG s'affiche. Résultat : l'adresse esclave 1A est affichée en permanence.
6	Pour définir l'adresse 2A, appuyez sur le bouton ESC et reprenez le processus à l'étape 4, en définissant l'adresse sur 2 au lieu de 1. Résultat : l'adresse esclave 2A est affichée en permanence.
7	Tournez l'interrupteur rotatif en position OFF puis débranchez les câbles.

Configuration d'un réseau de communication vers un automate

3

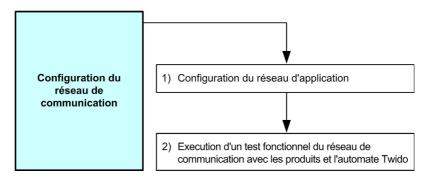
Présentation

Ce chapitre décrit de façon détaillée comment établir une communication vers un automate.

Le tableau ci-dessous indique le logiciel nécessaire pour établir une communication en fonction de l'automate utilisé dans l'application.

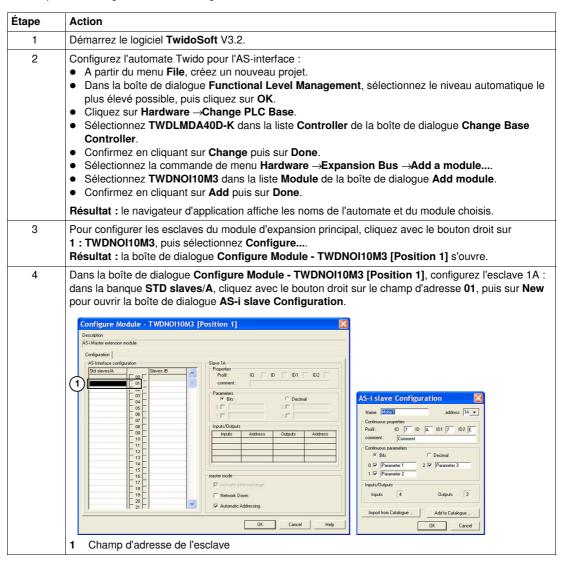
API	Logiciel utilisé pour établir la communication
Twido	TwidoSoft (ou TwidoSuite)
Premium	Unity Pro

Contenu de ce chapitre


Ce chapitre contient les sujets suivants :

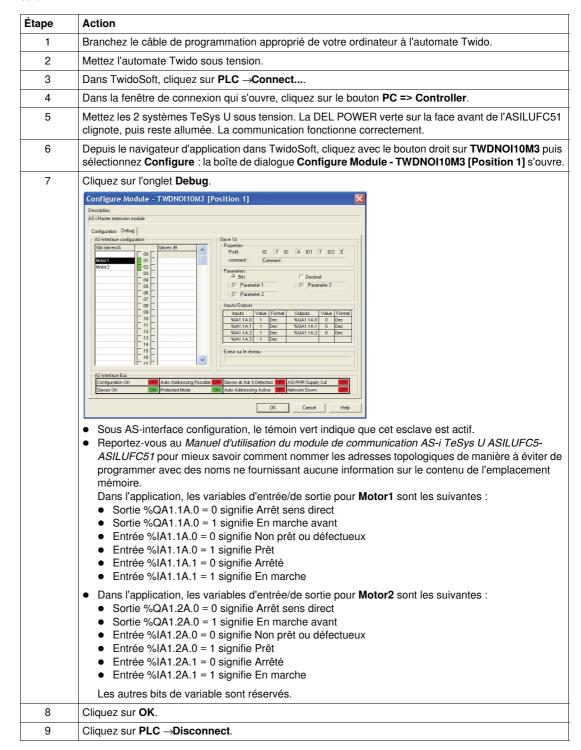
Sujet	Page
3.1 Configuration du TeSys U sur le réseau AS-interface pour un automate Twido (avec TwidoSoft)	12
3.2 Configuration du TeSys U sur le réseau AS-interface pour un automate Premium (avec Unity Pro)	15
3.3 Mise en place de la solution TeSys U avec AS-i	18

1672615 01/2010

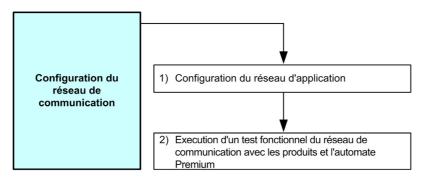

3.1 Configuration du TeSys U sur le réseau AS-interface pour un automate Twido (avec TwidoSoft)

Processus de configuration d'un automate Twido

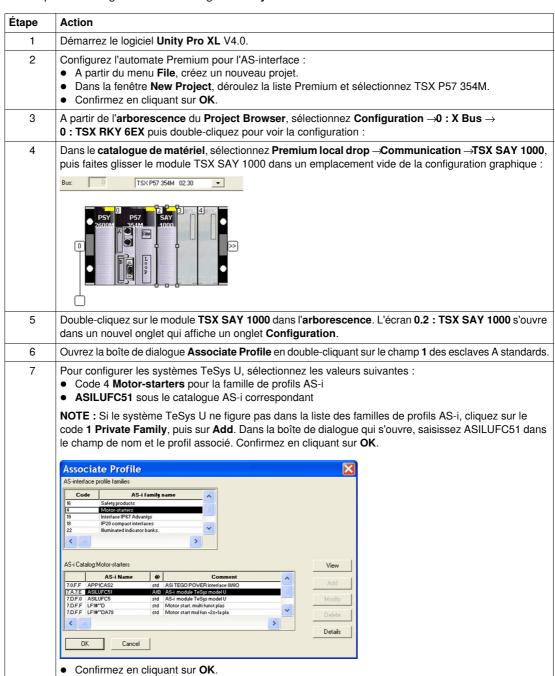
1) Configuration du réseau d'application

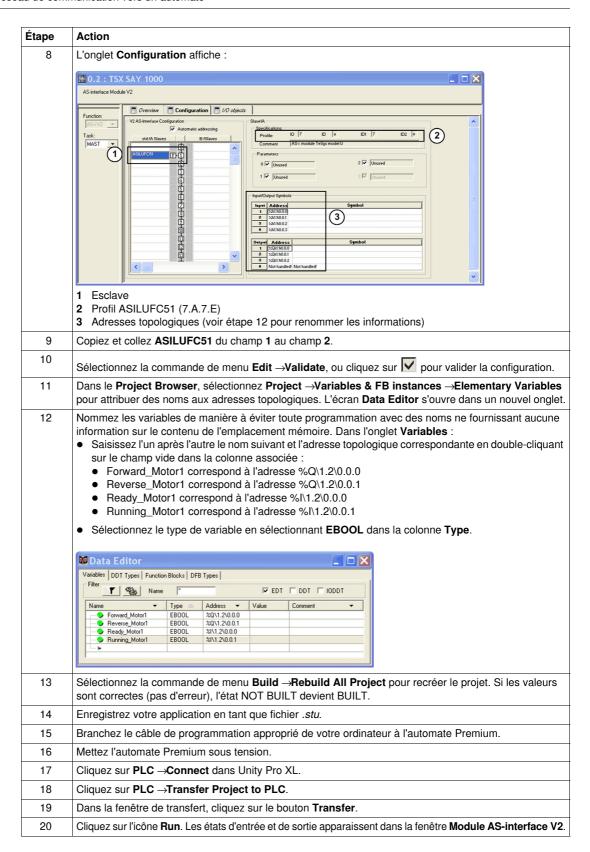

Les étapes de configuration avec le logiciel TwidoSoft sont les suivantes :

Étape	Action
5	Dans la boîte de dialogue AS-i slave Configuration , saisissez les valeurs suivantes, puis cliquez surOK pour confirmer : Nom: Motor1 Adresse: 1A Profil: IO = 7, ID = A, ID1 = 7, ID2 = E
	Résultat : les adresses des entrées et sorties s'affichent dans l'onglet Configuration pour Motor1 : Inputs/Outputs
6	Dans la banque STD slaves/A, cliquez avec le bouton droit sur le champ d'adresse 02, puis sur New pour ouvrir la boîte de dialogue AS-i slave Configuration.
7 Saisissez ou modifiez les valeurs suivantes puis cliquez sur OK pour confirmer : • Nom : Motor2 • Adresse : 2A • Profil : IO = 7 , ID = A , ID1 = 7 , ID2 = E	
	Résultat : les adresses des entrées et sorties s'affichent dans l'onglet Configuration pour Motor2 : Inputs
8	Confirmez la configuration esclave en cliquant sur OK .
9	L'éditeur de configuration affiche la liste des 2 esclaves avec leurs addresses.
10	Enregistrez votre application en tant que fichier .twd.


2) Execution d'un test fonctionnel du réseau de communication notamment les produits et l'automate Twido

Pour tester la configuration, le câblage et la communication avec le logiciel TwidoSoft, procédez comme suit :


3.2 Configuration du TeSys U sur le réseau AS-interface pour un automate Premium (avec Unity Pro)


Processus de configuration d'un automate Premium

1) Configuration du réseau d'application

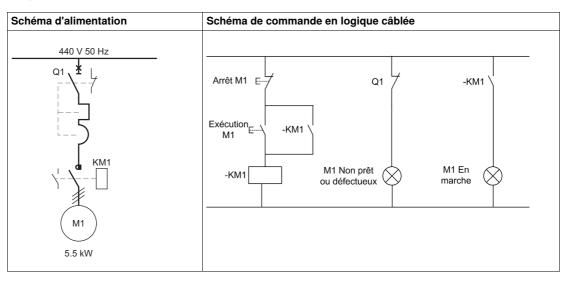
Les étapes de configuration avec le logiciel Unity Pro XL sont les suivantes :

2) Exécution d'un test fonctionnel du réseau de communication

Pour tester la configuration, le câblage et la communication avec le logiciel Unity Pro XL, procédez comme suit :

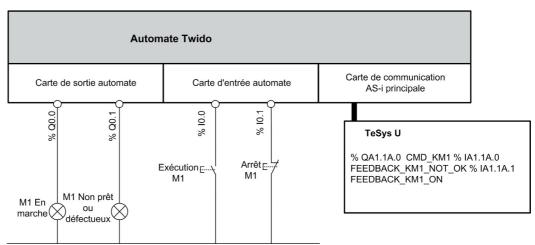
Étape	Action
1	A partir de l'arborescence du Project Browser, sélectionnez votre configuration.
2	Dans la fenêtre Configuration , assurez-vous qu'aucun point rouge n'apparaît à côté des noms d'onglet Module Fault et Debug . Cela signifie que le programme fonctionne correctement.
3	Dans la fenêtre Configuration, sélectionnez l'onglet Debug.
4	Sous Channel test, sélectionnez le numéro d'esclave 1 et cliquez sur le bouton Identification.
5	Une boîte de dialogue s'ouvre indiquant que l'échange est OK. La DEL COMM du TeSys U clignote une fois par demande d'identification reçue.

3.3 Mise en place de la solution TeSys U avec AS-i

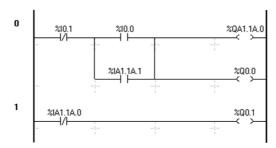

Présentation

Les schémas de commande moteur suivants présentent le câblage selon la solution choisie et montrent la facilité de programmation en utilisant TeSys U avec AS-i.

Seule la commande du moteur 1 (M1) utilisée dans l'exemple d'application est décrite.


Solution traditionnelle avec logique câblée

Le schéma ci-dessous présente la logique câblée dans la solution traditionnelle (sans automate ni TeSys U) :


Schneider Electric Solution avec logique programmable

Le schéma suivant présente la logique de câblage programmable avec un automate et un automate-démarreur TeSys ${\sf U}$:

TwidoSoft Programme de commande du moteur 1

Le programme suivant dans TwidoSoft permet la commande du moteur 1 :

Le tableau suivant présente les entrées et sorties et les variables AS-icorrespondantes :

Symbole	Adresse	Description
M1_NOT_READY	%Q0.1	Témoin non prêt ou défectueux
M1_RUNNING	%Q0.0	Témoin En marche
STOP_M1	%I0.1	Bouton-poussoir STOP
RUN_M1	%10.0	Bouton-poussoir RUN
CMD_KM1	%QA1.1A.0	Commande « Moteur 1 » KM1
FEEDBACK_KM1_ON	%IA1.1A.1	Remarques sur la position des bornes
FEEDBACK_KM1_NOT_OK	%IA1.1A.0	Remarques Non prêt ou défectueux KM1