

PRODUCT ENVIRONMENTAL PROFILE Environmental Product Declaration

ABB MCCB Tmax XT7M IEC 1600A (CN) Production site: Xiamen, China June 2023

REGISTRATION NUMBER		IN COMPLIANCE WITH PCR-ED4-EN-2021 09 06			
ABBG-00080-V01.01-EN		SUPPLEMENTED BY PSR-0005-ED2-EN-2016 03 29			
VERIFIER ACCREDITATION NUMBER		INFORMATION AND REFERENCE DOCUMENTS			
VH42		www.pep-ecopassport.org			
DATE OF ISSUE		VALIDITY PERIOD			
06 -2023		5 years			
INDEPENDENT VERIFIC	CATION OF THE DECLARATION AND DAT	TA, IN COMPLIANCE WITH ISO 14025: 2006			
INTERNAL	EXTERNAL 🗵				
THE PCR REVIEW WAS	CONDUCTED BY A PANEL OF EXPERTS	CHAIRED BY JULIE ORGELET (DDEMAIN)			
PEP ARE COMPLIANT	WITH XP C08-100-1 :2016 OR EN 50693:				
THE ELEMENTS OF TH	D WITH ELEMENTS FROM ANOTHER PROGRAM.				
DOCUMENT IN COMPLIANCE WITH ISO 14025: 2006 « ENVIRONMENTAL LABELS AND DECLARATIONS. TYPE III ENVIRONMENTAL DECLARATIONS »					
© Copyright 2022 ABB.	All rights reserved				

© Copyright 2022 ABB. All rights reserved.

	ABB S.p.A.
EPD Owner	Via Luciano Lama, 33, 20099 Sesto San Giovanni (MI) – Italy www.abb.com
Manufacturer name and address	ABB Xiamen Low Voltage Equipment Co. Ltd. Xiamen, Fujian, China, 361006
Company contacts	EPD_ELSP@in.abb.com
Reference product	XT7M 1600 Ekip Dip LS/I In=1600A – 3P
Description of the product	ABB's new Tmax XT series of Molded Case circuit-breakers, combine the finest protection that has always characterized ABB's molded case circuit breakers with the most precise metering and connectivity functionalities, providing de- signers, installers and end-users exclusive solutions for their daily needs. XT7M is suitable for applications from 800 A to 1600 A. It enables a direct communi- cation to the new energy management cloud-computing platform ABB Abil- ity [™] Energy and Asset Manager
	The functional unit to protect during 20 years the installation against over- loads and short-circuits in circuit with assigned voltage U and rated current In. This protection is ensured in accordance with the following parameters
Functional unit	IEC Type Rated voltage [V]: 690 Rated current [A]: 1600 Rated breaking capacity [kA]: 50 Number of poles: 3/4 Tripping Curve: L, S, I, G
Other products covered	XT7M Circuit Breakers of types L/S/H/D of IEC type and ratings 800A to 1600A / 3poles /4poles
Other products covered Reference lifetime	
	/ 3poles /4poles
Reference lifetime	/ 3poles /4poles 20 years
Reference lifetime Product category	 / 3poles /4poles 20 years Electrical, Electronic and HVAC-R Products The use phase has been modeled based on the sales mix data (2021), and the
Reference lifetime Product category Use Scenario Geographical	 / 3poles /4poles 20 years Electrical, Electronic and HVAC-R Products The use phase has been modeled based on the sales mix data (2021), and the corresponding low voltage electricity countries mix Raw materials & Manufacturing: [China / Global] Assembly: [China] Distribution / Use: [Global] specific sales mix
Reference lifetime Product category Use Scenario Geographical representativeness Technological representa-	 / 3poles /4poles 20 years Electrical, Electronic and HVAC-R Products The use phase has been modeled based on the sales mix data (2021), and the corresponding low voltage electricity countries mix Raw materials & Manufacturing: [China / Global] Assembly: [China] Distribution / Use: [Global] specific sales mix EoL: [Global] Materials and processes data are specific for the production of XT7M circuit
Reference lifetimeProduct categoryUse ScenarioGeographical representativenessTechnological representa- tiveness	 / 3poles /4poles 20 years Electrical, Electronic and HVAC-R Products The use phase has been modeled based on the sales mix data (2021), and the corresponding low voltage electricity countries mix Raw materials & Manufacturing: [China / Global] Assembly: [China] Distribution / Use: [Global] specific sales mix EoL: [Global] Materials and processes data are specific for the production of XT7M circuit breaker This study is based on the LCA study described in the LCA report
Reference lifetimeProduct categoryUse ScenarioGeographical representativenessTechnological representa- tivenessLCA Study	 / 3poles /4poles 20 years Electrical, Electronic and HVAC-R Products The use phase has been modeled based on the sales mix data (2021), and the corresponding low voltage electricity countries mix Raw materials & Manufacturing: [China / Global] Assembly: [China] Distribution / Use: [Global] specific sales mix EoL: [Global] Materials and processes data are specific for the production of XT7M circuit breaker This study is based on the LCA study described in the LCA report 2TFP990013A1011
Reference lifetimeProduct categoryUse ScenarioGeographical representativenessTechnological representa- tivenessLCA StudyEPD type	 / 3poles /4poles 20 years Electrical, Electronic and HVAC-R Products The use phase has been modeled based on the sales mix data (2021), and the corresponding low voltage electricity countries mix Raw materials & Manufacturing: [China / Global] Assembly: [China] Distribution / Use: [Global] specific sales mix EoL: [Global] Materials and processes data are specific for the production of XT7M circuit breaker This study is based on the LCA study described in the LCA report 2TFP990013A1011 Products family declaration
Reference lifetimeProduct categoryUse ScenarioGeographical representativenessTechnological representa- tivenessLCA StudyEPD type EPD scopeYear of reported primary	 / 3poles /4poles 20 years Electrical, Electronic and HVAC-R Products The use phase has been modeled based on the sales mix data (2021), and the corresponding low voltage electricity countries mix Raw materials & Manufacturing: [China / Global] Assembly: [China] Distribution / Use: [Global] specific sales mix EoL: [Global] Materials and processes data are specific for the production of XT7M circuit breaker This study is based on the LCA study described in the LCA report 2TFP990013A1011 Products family declaration "Cradle to grave"
Reference lifetimeProduct categoryUse ScenarioGeographical representativenessTechnological representa- tivenessLCA StudyEPD type EPD scopeYear of reported primary data	 / 3poles /4poles 20 years Electrical, Electronic and HVAC-R Products The use phase has been modeled based on the sales mix data (2021), and the corresponding low voltage electricity countries mix Raw materials & Manufacturing: [China / Global] Assembly: [China] Distribution / Use: [Global] specific sales mix EoL: [Global] Materials and processes data are specific for the production of XT7M circuit breaker This study is based on the LCA study described in the LCA report 2TFP990013A1011 Products family declaration "Cradle to grave" 2021

STATUS	SECURITY LEVEL	PEP ECOPASSPOR REG. NUMBER	DOCUMENT ID.	REV.	LANG.	PAGE
Approved	Public	ABBG-00080-V01.01-EN	2TFP990013A1011	A.002	en	2/17
© Copyright 2022 ABB. All rights reserved.						

Contents

ABB Purpose & Embedding Sustainability	4
General Information XT7M product cluster	
Constituent Materials	6
LCA background information Functional unit and Reference Flow System boundaries and life cycle stages Functional and geographical boundaries Temporal and geographical boundaries Boundaries in the life cycle Data quality Functionmental impact indicators Allocation rules Functions and simplifications	7 7 8 8 8 8 8 8 9
Inventory analysis	9
Environmental impacts1	3
Additional environmental information1	6
References1	7

STATUS	SECURITY LEVEL	PEP ECOPASSPOR REG. NUMBER	DOCUMENT ID.	REV.	LANG.	PAGE
Approved	Public	ABBG-00080-V01.01-EN	2TFP990013A1011	A.002	en	3/17
© Copyright 2022 ABB. All rights reserved.						

ABB Purpose & Embedding Sustainability

ABB is a leading global technology company that energizes the transformation of society and industry to achieve a more productive, sustainable future. By connecting software to its electrification, robotics, automation and motion portfolio, ABB pushes the boundaries of technology to drive performance to new levels. With a history of excellence stretching back more than 130 years, ABB's success is driven by about 105 thousand talented employees in over 100 countries.

ABB's Electrification business offers a wide-ranging portfolio of products, digital solutions and services, from substation to socket, enabling safe, smart and sustainable electrification. Offerings encompass digital and connected innovations for low voltage and medium voltage, including EV infrastructure, solar inverters, modular substations, distribution automation, power protection, wiring accessories, switchgear, enclosures, cabling, sensing and control. ABB is committed to continually promoting and embedding sustainability across its operations and value chain, aspiring to become a role model for others to follow. With its ABB Purpose, ABB is focusing on reducing harmful emissions, preserving natural resources and championing ethical and humane behavior.

General Information

Located in Xiang'an Torch Industrial Park of Xiamen, ABB Xiamen Hub, with an investment of 2 billion yuan (approximate \$300 million) and covering an area of ~ 430000 square meters, officially came into service on Nov. 2018. It integrated eight ABB companies in Xiamen to create smarter production workshop and workplace with higher efficiency through optimized resource allocation and unified management. ABB in Xiamen, with nearly 3,500 employees in total, has a full range of businesses including R&D, manufacturing, engineering, sales and services, as well as ABB China's supply chain management and corporate functions.

The ABB Xiamen Hub is ABB's biggest manufacturing centre for middle & low voltage switchgears and air circuit breakers. With powerful R&D and innovation capability, it is home to:

- One of ABB's largest R&D centres for NeoGear and MNS low-voltage systems
- ABB's first digitally connected remote service centre in China
- ABB Technology Experience Centre covering full ABB solution & focusing on user experience

As a modernized large industrial park, ABB Xiamen Hub widely implements environment friendly materials, energy - saving technique and intelligent solutions. They include BMS system for centralized control and monitoring of equipment, PMCS solution for comprehensive management of energy consumption, i-Bus® intelligent building control system for lighting control, rainwater recovery system, and electric vehicle charging facility. With all these solutions, ABB Xiamen Hub has set an example for building a green, low - carbon and intelligent industrial park

© Copyright 2022 ABB. All rights reserved.						
Approved	Public	ABBG-00080-V01.01-EN	2TFP990013A1011	A.002	en	4/17
STATUS	SECURITY LEVEL	PEP ECOPASSPOR REG. NUMBER	DOCUMENT ID.	REV.	LANG.	PAGE

XT7M product cluster

ABB's new Tmax XT series of Molded Case circuit-breakers, combine the finest protection that has always characterized ABB's molded case circuit breakers with the most precise metering and connectivity functionalities, providing designers, installers and end-users exclusive solutions for their daily needs. Suitable for applications from 160 A to 1600 A, the Tmax XT offers exceptional breaking capacity for all voltages and applications. Combined with high-precision electronic relays of the smallest sizes, the new series protects equipment investments and ensures uninterrupted operation and high availability.

Product analyzed in this LCA is XT7M IEC type which is a motorized mechanism. The following table shows the product characteristics.

Circuit breaker	XT7M IEC Type
Max Rated voltage U [V]	690
Max Rated current In [A]	1600
Max Rated short circuit breaking capacity Icu [kA]	200
Number of poles	3/4

Table 1: Technical characteristics of XT7M circuit breakers (Refer Technical catalogue for details).

Along the whole XT7M product cluster a set of different build configurations have been covered by this analysis. Main differences consist of the number of poles, trip unit type, and short circuit breaking capacity. The LCA SimaPro model has been fully parametrized to fulfill each different configuration.

Official declarations LB-DT 17-21D [12] and 1SDL000282R1265 [13] states compliance of ABB molded case circuit breakers and air circuit breakers respectively to RoHS II and REACH regulations; annex 1SDL000571R0 [14] provides exemptions considered for RoHS II while annex 1SDL000572R0 [15] lists REACH substances present in a concentration above 0,1% adding reference to products where involved parts are mounted.

STATUS	SECURITY LEVEL	PEP ECOPASSPOR REG. NUMBER	DOCUMENT ID.	REV.	LANG.	PAGE
Approved	Public	ABBG-00080-V01.01-EN	2TFP990013A1011	A.002	en	5/17
© Copyright 2022 ABB. All rights reserved.						

Constituent Materials

ann

XT7M

The representative product is XT7M 1600A L - 3P IEC Circuit Breaker which weighs 17.6 kg including its installed accessories, paper documentation and packaging.

Materials	Name	IEC 62474 MC	[g]	Weight %
	Cu and CU alloys	M-121	4599	26.1%
	Steel	M-119	4217	23.9%
Metals	Stainless Steel	M-100	198	1.1%
	Precious metals	M-159	76	0.4%
	Aluminium	M-120	42	0.2%
	Unsaturated polyester (UP)	M-301	3552	20.1%
	PolyEthylene (PE)	M-251	554	3.2%
	Polyamide (PA)	M-258	445	2.5%
Plastics	Polycarbonate (PC)	M-254	630	3.6%
	PolyPropylene (PP)	M-252	123	0.7%
	PolyEthylene Terephthalate (PET)	M-259	93	0.5%
	Other Polymers	NA	228	1.3%
	Paper	M-341	1624	9.2%
Others	Wood	M-340	1200	6.8%
	Other	NA	73	0.4%
Total			17654	100%

Table 2: Weight of materials XT7M 1600A L - 3P IEC

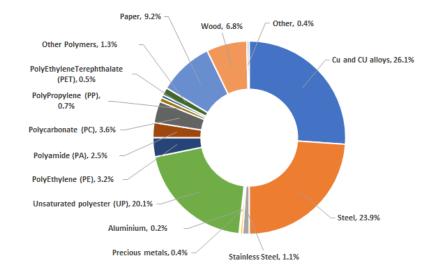


Figure 1: Composition of XT7M 1600A L - 3P IEC

Packaging weight for XT7M and its composition is tabulated below.

Material	XT7M- 3P Weight(g)
Corrugated Cardboard	1300
Polyethylene	480
Plywood	1200
Total	2980

Table 3: Weight of materials XT7M - Packaging

STATUS	SECURITY LEVEL	PEP ECOPASSPOR REG. NUMBER	DOCUMENT ID.	REV.	LANG.	PAGE
Approved	Public	ABBG-00080-V01.01-EN	2TFP990013A1011	A.002	en	6/17
© Copyright 2022 ABB. All rights reserved.						

Ē

LCA background information

Functional unit and Reference Flow

The functional unit is the reference unit used to quantify the performance of the service delivered by a product to the user. The main purpose of the functional unit is to provide a reference to which inputs and outputs are related in the LCA.

The functional unit to protect during 20 years the installation against overloads and shortcircuits in circuit with assigned voltage U and rated current In (see tables 1, p 5.). This protection is ensured in accordance with the following parameters

Number of poles	3/4
Rated breaking capacity [kA]	50
Tripping Curve	L, S, I, G

The Reference Flow of the study is a single circuit breaker (including its packaging and accessories) with mass described in page 6 table 2-3.

System boundaries and life cycle stages

The life cycle of the Low Voltage Circuit Breaker, an EEPS (Electronic and Electrical Products and Systems), is a "from cradle to grave" analysis and covers the following main life cycle stages: manufacturing, including the relevant acquisition of raw material, preparation of semifinished goods, etc. and processing steps; distribution; installation, including the relevant steps for the preparation of the product for use; use including the required maintenance steps within the RSL (reference service life of the product) associated to the reference product; endof-life stage, including the necessary steps until final disposal or recovery of the product system.

The following table shows the stages of the product life cycle and the information stages according to EN 50693:2019 [3] for the evaluation of electronic and electrical products and systems.

Manufacturing	Distribution	Installation	Use	End-of-Life (EoL)
Acquisition of raw materials				
Transport to manufacturing site	Transport to dis-	Installation	Lleeve	Deinstallation
Components/parts manufacturing	tributor/ logistic center	EoL treatment	Usage Mainte-	Collection and
Assembly	Transport to	of generated waste (pack-	nance	transport
Packaging	place of use	aging)		EoL treatment
EoL treatment of generated waste				

Table 4: Phases for the evaluation of construction products according to EN50693:2019 [3].

STATUS	SECURITY LEVEL	PEP ECOPASSPOR REG. NUMBER	DOCUMENT ID.	REV.	LANG.	PAGE
Approved	Public	ABBG-00080-V01.01-EN	2TFP990013A1011	A.002	en	7/17
© Copyright 2022	ABB. All rights reserved.					

Temporal and geographical boundaries

The ABB component suppliers are sourced all over the world. All primary data collected are from 2021, which is a representative production year. Secondary data are also representative for this year, as provided by ecoinvent [6].

The selected ecoinvent [6] processes in the LCA model have a global representativeness, due to the unclear origin of each component. In this way, a conservative approach has been adopted.

Boundaries in the life cycle

As indicated in the PCR capital goods such as buildings, machinery, tools and infrastructure, the packaging for internal transport which cannot be allocated directly to the production of the reference product, may be excluded from the system boundary.

Infrastructures, when present, such as processes deriving from the ecoinvent [6] database have not been excluded.

Data quality

In this LCA, both primary and secondary data are used. Site specific foreground data have been provided by ABB. Main data sources are the bill of materials & drawings which are available on the ERP (SAP) & Windchill. For all processes for which primary are not available, generic data originating from the ecoinvent database [6], allocation cut-off by classification, are used. The ecoinvent database available in the SimaPro software [7] is used for the calculations.

The data quality characterized by quantitative and qualitative aspects, is presented in Appendix 1. Each data quality parameter has been rated according to DQR tables from Chapter 7.19.2.2 of the Product Environmental Footprint Guide v.6.3 to give an indication of geography, technology and temporal representativeness.

Environmental impact indicators

The information obtained from the inventory analysis is aggregated according to the effects related to the various environmental issues. According to "PCR-ed4-EN-2021 09 06" and EN 50693:2019 [3] the environmental impact indicators must be determined using the characterization factors and impact assessment methods specified in EN 15804:2012+A2:2019 [8].

PCR-ed4-EN-2021 09 06 and the EN 50693:2019 [3] standard establish four indicators for climate change: Climate change (total) which includes all greenhouse gases; Climate change (fossil fuels); Climate change (biogenic) which includes the emissions and absorption of biogenic carbon dioxide and biogenic carbon stored in the product; Climate change (land use) - land use and land use transformation. Other indicators as per the PCR [1].

Allocation rules

Allocation coefficients are based on the E1.2 & XT7-XT7M production line occupancy area for electricity consumption and waste generated as both the product are made on same production line.

STATUS	SECURITY LEVEL	PEP ECOPASSPOR REG. NUMBER	DOCUMENT ID.	REV.	LANG.	PAGE		
Approved	Public	ABBG-00080-V01.01-EN	2TFP990013A1011	A.002	en	8/17		
© Copyright 2022 ABB. All rights reserved.								

The total number of operators working on the production line was considered for water consumption. All these flows have been allocated and divided by the total number of E1.2 and XT7-XT7M circuit breakers produced in 2021.

Limitations and simplifications

Raw materials life cycle stage includes the extraction of raw materials as well as the transport distances to the manufacturing suppliers. These distances are assumed to be 1000 km assuming no specific data available (PCR-ed4-EN-2021_09_06, ch 2.5.3). This distance has been added to the one already included in the market processes used for the model, as a result of a conservative choice made by the LCA operators.

Surface treatments like galvanizing, tin and silver plating as well as their related transport processes (back and forth from the finishing suppliers) have been considered in the LCA model. Scraps for metal working and plastic processes are included when already defined in Ecoinvent [6].

Printed circuit boards (PCB) have been modelled with a representative cluster dataset including: every single component, the unpopulated board as well as the surface mounting technology (SMD) process.

Energy Models

LCA Stage	EN 15804:2012 +A2:2019 module	Energy model	Notes
Raw material ex- traction and pro- cessing	A1-A2	Electricity, {GLO} mar- ket group for Cut-off Electricity, {RoW} mar- ket group for Cut-off	Based on materials and supplier's locations
Manufacturing	A3	ABB Green Mix Low Volt- age	Specific Energy model for ABB Xiamen, manufactur- ing plant, 100% renewable
Installation (Packaging EoL)	A5	Electricity, {GLO} mar- ket group for Cut-off	
Use Stage	B1	Electricity, [country]x market for Cut-off, S	Low voltage, based on 2021 country sales mix
EoL	C1-C4	Electricity, {GLO} mar- ket group for Cut-off	

Table 5: Energy models used in each LCA stage

Inventory analysis

In this LCA, both primary and secondary data are used. Site specific foreground data have been provided by ABB. For data collection, Bills of Material (BOM) extracted from ABB's internal SAP and Windchill ERP were used. They are a list of all the components and assemblies that constitute the finished product, organized by level. Each item is matched with its code, quantity, weight and supplier. The BOMs were then processed, adding material, surface area and other weight data, taken from technical drawings. Finally, the manufacturing process and surface treatment were assigned, according to information provided by R&D personnel. Road distances between the suppliers and ABB were calculated using Google Maps, and marine distances using Distances & Time (Separates).

STATUS	SECURITY LEVEL	PEP ECOPASSPOR REG. NUMBER	DOCUMENT ID.	REV.	LANG.	PAGE
Approved	Public	ABBG-00080-V01.01-EN	2TFP990013A1011	A.002	en	9/17
© Copyright 2022	ABB. All rights reserved.					

All primary data collected from ABB are from 2021, which was a representative production year. The ecoinvent cut-off by classification system processes [6] are used to represent the LCA model.

Due to the large amounts of components in the Circuit Breaker, raw material inputs have been modelled with data from ecoinvent [6] representing either Global [GLO] or Rest of World [RoW] market coverage based on the supplier's location. These datasets are assumed to be representative.

Manufacturing stage

The Circuit Breakers are composed of a multitude of components, all of which are made from of numerous materials. Most of the inputs to the products' manufacturing stage are already produced component parts.

All the circuit breaker's components have been modelled according to their specific raw materials and manufacturing processes.

The single use packaging as well as paper documentation are also included in the analysis in the manufacturing stage. ABB receives packaging components from outside suppliers and packages the circuit breakers before shipping them.

Most of the inputs to the products' manufacturing stage are already produced component parts from the supply chain. In the ABB manufacturing plant, the different components and subassemblies are assembled into the circuit breaker. All the semi-finished and ancillary products are produced by ABB's suppliers

The entire supplier's network has been modelled with the calculation of each transportation stage, from the first manufacturing supplier to the next.

All the distances from the last subassembly suppliers' factories to the ABB manufacturing facility have been calculated.

In the ABB factory, the different components and subassemblies are assembled into the circuit breaker. All the semi-finished and ancillary products are produced by ABB's suppliers.

The energy mix used for the production phase is representative for ABB production site and includes renewable energy only.

The complete energy mix has been modeled considering the report on energy origins provided to ABB for the year 2021.

Distribution

The transport distances from ABB manufacturing plant to the distribution centers (regional distribution centers / local sales organizations) have been calculated considering the specific reference products sales mix data from 2022 (SAP ERP sales data as a source). Reference product distribution is representative of the entire size and equivalent to distribution of other products listed in the extrapolation tables.

The other parameter affecting the environmental impact for this LCA stage is the total mass of the product (including its packaging). Different mass values for each specific configuration covered by this study have been considered in the model.

An additional 10% distance by road has been considered to cover the last distribution stage to the end customer (usage location).

STATUS	SECURITY LEVEL	PEP ECOPASSPOR REG. NUMBER	DOCUMENT ID.	REV.	LANG.	PAGE				
Approved	Public	ABBG-00080-V01.01-EN	2TFP990013A1011	A.002	en	10/17				
© Copyright 2022	© Copyright 2022 ABB. All rights reserved.									

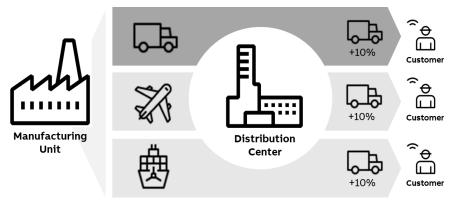


Figure 2: Distribution methodology

Installation

The installation phase only implies manual activities, and no energy is consumed. This phase also includes the disposal of the packaging of the Low Voltage Circuit Breaker.

All the components needed to install the product (e.g. IP30 flange, lifting plates, etc.) have been included in the analysis.

For the disposal of the packaging after installation of the circuit breaker at the end of its life, a transport distance of 1000 km (according to PCR [1]) was assumed.

The actual disposal site is unknown and is managed by the customer. The disposal scenario of the packaging was calculated based on the latest China urban domestic waste treatment data available.

Use

Use and maintenance are modelled according to the PCR [1].

During the use phase, circuit breakers dissipate some electricity due to power losses. They are calculated according to the data provided in the catalogue of the circuit breaker and following the PCR [1] & PSR [2] rules:

Parameters		
lu	[A]	1600
lu	[%]	50
h/year	[h]	8760
RSL	[years]	20
Time operating coefficient	[%]	30

Table 6: Use phase parameters

The formula for the calculation of the electricity consumed is shown below and it is described as follows, where P_{use} is the power consumed by the breaker at a given value of current:

$$E_{use} [kWh] = \frac{P_{use} * 8760 * RSL * \alpha}{1000}$$

The above calculations have been performed according to the number of poles (3) on which relevant current flows during use phase.

STATUS	SECURITY LEVEL	PEP ECOPASSPOR REG. NUMBER	DOCUMENT ID.	REV.	LANG.	PAGE				
Approved	Public	ABBG-00080-V01.01-EN	2TFP990013A1011	A.002	en	11/17				
© Copyright 2022	© Copyright 2022 ABB. All rights reserved.									

The Energy model used for this phase has been modeled based on the 2021 actual sales mix data (SAP ERP sales data as a source). From Ecoinvent [6] database, the low voltage electricity country mix for each country_(x) has been selected with its respective percentage on the total sales mix (Electricity, low voltage [country]_x | market for | Cut-off, S).

Since no maintenance happens during the use phase, the environmental impacts linked to this procedure have been considered as null in the analysis.

End of life

The end-of-life stage is modelled according to PCR [1] and IEC/TR 62635 [9]. The percentages for end-of-life treatments of materials are taken from IEC/TR 62635 [9].

Since no specific data is available, the transport distances from the place of use to the place of disposal are assumed to be 1000 km (local/domestic transport by lorry, according to PCR [1]).

Disassembly manuals can be provided to the customer to support product disposal. All circuit moving and fixed parts are labelled with WEEE logo.

STATUS	SECURITY LEVEL	PEP ECOPASSPOR REG. NUMBER	DOCUMENT ID.	REV.	LANG.	PAGE
Approved	Public	ABBG-00080-V01.01-EN	2TFP990013A1011	A.002	en	12/17
© Copyright 2022	ABB. All rights reserved.					

Environmental impacts

The following table show the environmental impact indicators of the life cycle of a XT7M 1600A L - 3P IEC Circuit Breaker as indicated by PCR [1] and EN 50693:2019 [3]. The indicators are divided into the contribution of the processes to the different stages (manufacturing, distribution, installation, use and end-of-life).

Impact category	Unit	Total	Manufactur- ing	Distribu- tion	Installa- tion	Use	End of Life
GWP-total	kg CO2 eg	4.24E+03	1.24E+02	2.71E+00	3.49E+00	4.11E+03	6.08E+00
GWP-fossil	kg CO2 eq	4.22E+03	1.24E+02	2.70E+00	8.06E-01	4.09E+03	6.01E+00
GWP- biogenic	kg CO2 eq	2.24E+01	-9.85E-01	2.09E-03	2.68E+00	2.06E+01	7.27E-02
GWP-luluc	kg CO2 eq	1.74E+00	1.22E+00	1.02E-03	1.20E-04	5.17E-01	4.21E-03
ODP	kg CFC11 eq	4.05E-05	1.80E-05	6.14E-07	6.68E-08	2.14E-05	4.18E-07
AP	mol H+ eq	2.42E+01	2.63E+00	1.38E-02	1.85E-03	2.15E+01	3.07E-02
EP- freshwater	kg P eq	1.00E+00	2.40E-01	1.97E-04	3.15E-05	7.63E-01	1.43E-03
EP-marine	kg N eq	4.83E+00	2.65E-01	4.67E-03	7.80E-04	4.54E+00	1.44E-02
EP- terrestrial	mol N eq	5.17E+01	3.12E+00	5.10E-02	7.32E-03	4.84E+01	6.47E-02
POCP	kg NMVOC eq	1.35E+01	9.31E-01	1.52E-02	2.08E-03	1.26E+01	1.86E-02
ADP-m&m	kg Sb eq	1.06E-01	9.38E-02	6.22E-06	7.55E-07	1.23E-02	4.97E-06
ADP-fossil	MJ	3.79E+04	1.77E+03	4.17E+01	4.65E+00	3.61E+04	5.97E+01
WDP	m3	4.91E+02	6.86E+01	1.61E-01	2.74E-02	4.22E+02	5.07E-01
PENRE	MJ	3.78E+04	1.61E+03	4.17E+01	4.65E+00	3.61E+04	5.97E+01
PENRM	MJ	1.58E+02	1.58E+02	0.00E+00	0.00E+00	0.00E+00	0.00E+00
PENRT	MJ	3.79E+04	1.77E+03	4.17E+01	4.65E+00	3.61E+04	5.97E+01
PERE	MJ	3.79E+03	7.96E+01	4.62E-01	5.82E-02	3.70E+03	5.15E+00
PERM	MJ	1.83E+02	1.83E+02	0.00E+00	0.00E+00	0.00E+00	0.00E+00
PERT	MJ	3.97E+03	2.62E+02	4.62E-01	5.82E-02	3.70E+03	5.15E+00
SM	kg	4.84E+00	4.84E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
RSF	MJ	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
NRSF	MJ	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
FW	m3	1.22E+01	1.91E+00	5.23E-03	1.10E-03	1.03E+01	2.10E-02
HWD	kg	3.04E-02	2.34E-02	1.02E-04	1.17E-05	6.79E-03	6.51E-05
N-HWD	kg	3.71E+02	2.70E+01	3.86E+00	6.05E-01	3.33E+02	6.51E+00
RWD	kg	2.73E-02	5.98E-03	2.76E-04	2.92E-05	2.07E-02	2.40E-04
MfR	kg	1.31E+01	2.28E+00	0.00E+00	8.64E-01	0.00E+00	9.97E+00
MfER	kg	2.20E+00	0.00E+00	0.00E+00	1.94E+00	0.00E+00	2.65E-01
Efp	disease inc.	3.14E-04	1.15E-05	3.19E-07	3.67E-08	3.01E-04	4.98E-07
IrHH	kBq U-235 eq	8.52E+01	1.59E+01	1.96E-01	2.11E-02	6.87E+01	3.87E-01
ETX FW	CTUe	1.33E+05	2.68E+04	3.49E+01	5.18E+00	1.06E+05	1.16E+02
HTX CE	CTUh	1.62E-06	5.88E-07	9.08E-10	2.17E-10	1.03E-06	6.88E-09
HTX N-CE	CTUh	7.88E-05	3.34E-05	3.61E-08	9.07E-09	4.49E-05	4.26E-07
IrLS	Pt	9.78E+03	1.59E+03	4.71E+01	5.04E+00	8.10E+03	4.25E+01

Table 7: Impact indicators for XT7M 1600A L - 3P IEC

Impact category	Unit	XT7M 1600A L - 3P IEC
Biogenic Carbon content of the product	kg	3.43E-02
Biogenic Carbon content of the associated packaging	kg	1.47E+00
Table 8: Inventory flow other indi	cators	

STATUS	SECURITY LEVEL	PEP ECOPASSPOR REG. NUMBER	DOCUMENT ID.	REV.	LANG.	PAGE				
Approved	Public	ABBG-00080-V01.01-EN	2TFP990013A1011	A.002	en	13/17				
© Copyright 2022	© Copyright 2022 ABB. All rights reserved.									

Environmental impact indicators

GWP-total	Global Warming Potential total (Climate change)						
GWP-fossil	Global Warming Potential fossil						
GWP-biogenic	Global Warming Potential biogenic						
GWP-luluc	Global Warming Potential land use and land use change						
ODP	Depletion potential of the stratospheric ozone layer						
AP	Acidification potential						
EP-freshwater	Eutrophication potential - freshwater compartment						
EP-marine	Eutrophication potential - fraction of nutrients reaching marine end compartment						
EP-terrestrial	Eutrophication potential -Accumulated Exceedance						
POCP	Formation potential of tropospheric ozone						
ADP-m&m	Abiotic Depletion for non-fossil resources potential						
ADP-fossil	Abiotic Depletion for fossil resources potential, WDP						
WDP	Water deprivation potential.						

Resource use indicators

PENRE	Use of non-renewable primary energy excluding renewable pri- mary energy resources used as raw material
PENRM	Use of non-renewable primary energy resources used as raw ma- terial
PENRT	Total use of non-renewable primary energy resources (primary en- ergy and primary energy resources used as raw materials)
PERE	Use of renewable primary energy excluding non-renewable pri- mary energy resources used as raw material
PERM	Use of renewable primary energy resources used as raw material
PERT	Total use of renewable primary energy resources (primary energy and primary energy resources used as raw materials)

Secondary materials, water and energy resources

SM	Use of secondary materials
RSF	Use of renewable secondary fuels
NRSF	Use of non-renewable secondary fuels
FW	FW: Net use of fresh water

Waste category indicators

HWD	Hazardous waste disposed
N-HWD	Non-hazardous waste disposed
RWD	Radioactive waste disposed

Output flow indicators

MfR	Materials for recycling
MfER	Materials for energy recovery

Other indicators

Efp	Emissions of Fine particles
IrHH	Ionizing radiation, human health
ETX FW	Ecotoxicity, freshwater
HTX CE	Human toxicity, carcinogenic effects
HTX N-CE	Human toxicity, non-carcinogenic effects
lrLS	Impact related to Land use / soil quality

STATUS	SECURITY LEVEL	PEP ECOPASSPOR REG. NUMBER	DOCUMENT ID.	REV.	LANG.	PAGE			
Approved	Public	ABBG-00080-V01.01-EN	2TFP990013A1011	A.002	en	14/17			
© Copyright 2022 ABB. All rights reserved.									

Extrapolation for Homogeneous environmental family

This LCA covers different build configurations than the representative product. All the analyzed configurations have the same main functionality, product standards and manufacturing technology.

The different life cycle stages can be extrapolated to other products of the same homogeneous environmental family by applying a rule of proportionality to the parameters in the following tables, divided by different life cycle stages.

XT7M IEC Extrapolation:

Circuit Breaker	GWP-total	GWP-fossil	GWP-biogenic	GWP-luluc	ODP	AP	EP-freshwater	EP-marine	EP-terrestrial	РОСР	ADP-m&m	ADP-fossil	WDP
IEC - 3P - 800-1600 L	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
IEC - 3P - 800-1600 S/H	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
IEC - 3P - 1000-1600 D	0.90	0.90	1.17	0.98	0.70	0.92	0.92	0.91	0.93	0.93	0.95	0.91	0.93
IEC - 4P - 800-1600 L	1.28	1.28	1.65	1.33	1.21	1.31	1.31	1.29	1.30	1.30	1.31	1.27	1.28
IEC - 4P - 800-1600 S/H	1.28	1.28	1.65	1.33	1.21	1.31	1.31	1.29	1.30	1.30	1.31	1.27	1.28
IEC - 4P - 1000-1600 D	1.18	1.18	1.87	1.31	0.88	1.21	1.22	1.20	1.22	1.23	1.24	1.18	1.20

Table 9a: Manufacturing phase Extrapolation factors for XT7M Reference product: XT7M 1600A L - 3P IEC

Circuit Breaker	LCA Phase	AII
IEC - 3P - 800-1600 L		1.00
IEC - 3P - 800-1600 S/H	u	1.00
IEC - 3P - 1000-1600 D	outi	0.94
IEC - 4P - 800-1600 L	Distribution	1.26
IEC - 4P - 800-1600 S/H	Dis	1.26
IEC - 4P - 1000-1600 D		1.20

Table 9b: Distribution phase Extrapolation factors for XT7M Reference product: XT7M 1600A L - 3P IEC

Туре	In [A]	LCA Phase	Factor
	800		0.26
	1000	Use	0.39
IEC	EC 1250	Ď	0.61
	1600		1

Table 9c: Use phase Extrapolation factors for XT7M Reference product: XT7M 1600A L - 3P IEC

EVEL PEP ECOPASSPOR REG. NUMBER D	L PEP ECOPASSPOR REG. NUMBER DOCUMENT ID. REV. LANG. PAGE
ABBG-00080-V01.01-EN 2	ABBG-00080-V01.01-EN 2TFP990013A1011 A.002 en 15/17
ABBG-00080-V01.01-EN 2' reserved.	

Circuit Breaker	GWP-total	GWP-fossil	GWP-biogenic	GWP-luluc	ODP	AP	EP-freshwater	EP-marine	EP-terrestrial	РОСР	ADP-m&m	ADP-fossil	WDP
IEC - 3P - 800-1600 L	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
IEC - 3P - 800-1600 S/H	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
IEC - 3P - 1000-1600 D	0.94	0.94	0.96	0.94	0.93	0.94	0.94	0.96	0.94	0.94	0.94	0.94	0.94
IEC - 4P - 800-1600 L	1.30	1.30	1.23	1.32	1.28	1.31	1.32	1.32	1.30	1.30	1.28	1.30	1.31
IEC - 4P - 800-1600 S/H	1.30	1.30	1.23	1.32	1.28	1.31	1.32	1.32	1.30	1.30	1.28	1.30	1.31
IEC - 4P - 1000-1600 D	1.23	1.23	1.18	1.25	1.20	1.24	1.25	1.27	1.22	1.22	1.21	1.23	1.25

Table 9d: End of Life phase Extrapolation factors for XT7M Reference product: XT7M 1600A L - 3P IEC

Additional environmental information

According to the waste treatment scenario calculation in Simapro[7], based on the recycling rate in the technical report IEC/TR 62635 Edition 1.0 [9] Table D.6, the following recyclability potentials were calculated. The recyclability potential is calculated based on the product weight (excluding packaging).

	XT7M 1600A L - 3P IEC
Recyclability potential	69.0%

Table 10: Recyclability potential of XT7M

STATUS	SECURITY LEVEL	PEP ECOPASSPOR REG. NUMBER	DOCUMENT ID.	REV.	LANG.	PAGE	
Approved	Public	ABBG-00080-V01.01-EN	2TFP990013A1011	A.002	en	16/17	
© Copyright 2022 ABB. All rights reserved.							

References

- [1] PCR "PEP-PCR-ed4-EN-2021_09_06" Product Category Rules for Electrical, Electronic and HVAC-R Products (published: 6th September 2021)
- [2] PSR "PSR-0005-ed2-EN-2016 03 29" SPECIFIC RULES FOR Electrical switchgear and control gear Solutions (Circuit breakers)
- [3] EN 50693:2019 Product category rules for life cycle assessments of electronic and electrical products and systems
- [4] ISO 14040:2006 Environmental management -Life cycle assessment Principles and framework
- [5] ISO 14044:2006 Environmental management Life cycle assessment Requirements and guidelines
- [6] ecoinvent v3.8 (2021). ecoinvent database version 3.8 (https://ecoinvent.org/)
- [7] SimaPro Software version 9.3.0.3 PRé Sustainability
- [8] UNI EN 15804:2012+A2:2019: Sustainability of constructions Environmental product declarations (September 2019).
- [9] IEC/TR 62635 Guidelines for end-of-life information provided by manufacturers and recyclers and for recyclability rate calculation of electrical and electronic equipment -Edition 1.0 2012-10
- [10] 2TFP990013A1013– Annex LCA BOM / Processes
- [11] 2TFP990013A1012 Annex LCA Data Details
- [12] LB-DT 17-21D RoHS II (MCCBs and ACBs)
- [13] 1SDL000282R1265 REACH (MCCBs and ACBs)
- [14] 1SDL000571R0 Ver 01 RoHS Exemptions (MCCBs and ACBs)
- [15] 1SDL000572R0 Ver 01 SVHC present in excess of 0.1% (MCCBs and ACBs)

© Copyright 2022 ABB. All rights reserved.							
Approved	Public	ABBG-00080-V01.01-EN	2TFP990013A1011	A.002	en	17/17	
STATUS	SECURITY LEVEL	PEP ECOPASSPOR REG. NUMBER	DOCUMENT ID.	REV.	LANG.	PAGE	