

Note: you can download the complete User Manual in different languages from our website at: www.tesensors.com

(en) N° : QGH1315301
(fr) N° : QGH1315302
(de) N° : QGH1315303
(es) N° : QGH1315304
(it) N° : QGH1315305
(pt N° : QGH1315306
(2h) N° : QGH1315307
(ru) N° : QGH1315308

Scan the Qr-code to access the complete User Manual

We welcome your comments about this document. You can reach us by e-mail at: customer-support@tesensors.com

Dimensions

XCSRC.0M12

XCSRK2A1
XCSRK2A3

XCSRZE

XCSRZSRC1

[^0]

Face to Face Mounting (prefered configuration)

WARNING

IMPROPER SETUP OR INSTALLATION

The XCSR RFID switch must always be mounted and used with respect to the assured sensing distances Sao and Sar

When the guard is closed
When the guard is being opened and up to Sar the protected machinery shall not present any risk of danger.

UNINTENDED EQUIPMENT OPERATION
At every power-up phase, an automatic tuning between the transponder and the reader is performed. The aim of this automatic tuning is to reduce the environmental effects on the sensing distances (e.g. material of the mounting support, room temperature).
Thus, transponder and reader must be installed in their definitive operational conditions before operating the power-up.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

Detection Curves

A: Face to Face Mounting (prefered configuration)

Sao and Sar sensing distances along Y axis as function of Z (longitudinal misalignment for $X=0$)

Sao and Sar sensing distances along X axis as function of Z

B: Side by Side Mounting
Sao and Sar sensing distances along Y axis as function of X

(transverse misalignment for $Y=0 \mathrm{~mm}$)

XCSRCooe
Side by Side Mounting (specification)

$\mathbf{e}=$ Recommended minimum mounting distance between transponder and reader.

Minimum mounting clearances between safety switches

Tightening torque, tightening capacity

Electrical Connections

Pin Number	Description			
	XCSRC•0M12	XCSRC•2M12		XCSRC•1•M12
		Connector "OUT"	Connector "IN"	
(1)	+24 Vdc	+24 Vdc	+24 Vdc	+24 Vdc
(2)	OSSD2	OSSD2 (O2)	INPUT2 (12)	OSSD2
(3)	0 Vdc	0 Vdc	0 Vdc	0 Vdc
(4)	OSSD1	OSSD1 (O1)	INPUT1 (11)	OSSD1
(5)	NC	Diagnosis Out (Do)	Diagnosis \ln (Di)	EDM_ST_1
(6)				EDM_ST_2
(7)				NC
(8)				NC

NC : Not connected

Pre-Wired Female Connectors

XZCP11V12L2 XZCP11V12L5 XZCP11V12L10 XZCP11V12L20

XZCP12V12L2 XZCP12V12L5 XZCP12V12L10 XZCP12V12L20

M12, 8 pins

XZCP29P12L2 XZCP29P12L5 XZCP29P12L10 XZCP29P12L20

XZCP53P12L2 XZCP53P12L5 XZCP53P12L10 XZCP53P12L20

M12/M12 Female Jumpers

XZCR1111064D03 XZCR1111064D3 XZCR1111064D5 XZCR1111064D10 XZCR1111064D25

Sensors

XCSRC。

Wiring diagram

Cat. 4 / PL=e (EN/ISO 13849-1) / SIL3 (IEC 61508) / SILCL3 (IEC 62061)
(if combined with an appropriate Safety Control Unit PL=e / SIL 3 for Single and Daisy-chain models)

A WARNING

UNINTENDED EQUIPMENT
OPERATION
The external KM1 and KM2 contactors must have force-guided contacts.

IMPROPER CONNECTION

- The XCSR RFID Safety switches must be powered by a dedicated safety extra low voltage (SELV) or a protected extra low voltage (PELV).
- The XCSR RFID Safety Switches operate directly from a 24 Vdc power supply. The power supply must meet the requirements of IEC

60204-1. The SELV Schneider Electric part number ABL8RPS24 \cdots is recommended.

- The XCSR RFID Safety Switches must be connected using both safety outputs. A single safety output, if it fails, may not stop the machine.

Failure to follow these instructions can result in death, serious injury or equipment damage.

Standalone models

1	+24 Vdc	BN
2	OSSD2	WH
3	0 Vdc	BU
4	OSSD1	BK
5	EDM_ST_1	GY
6	EDM_ST_2	PK
7	NC (Not Connected)	VT
8	NC (Not Connected)	OR

Cables: XZCP29P12L..
XZCP53P12L..
$B N=$ Brown
$W H=$ White
$B U=$ Blue
BK = Black
GY = Grey PK = Pink
$V T=$ Purple
BK/WH = Black $/$ White GN/YE = Green $/$ Yellow
(1) : Use of arc suppressors for KM1 \& KM2 is recommended

Single models Connection to a safety relay XPSUAK

(1) Pulsed output for diagnostics

(2) H1:XCSR Indicator light deactivated

ESC: External start conditions

Single models Connection to a safety controller XPSMCM

Cables
XZCP11V12L..
or
XZCP12V12L..
(1) Pulsed output for diagnostics

Operating and output States，LED meaning

Operating state	Color LED1（TR）	$\begin{gathered} \text { Color } \\ \text { LED2 (RD) } \end{gathered}$	OSSDs	LEDs meaning	Comment
OFF	OFF	OFF	OFF	XCSR reader is unpowered	
Initialization	Orange	Orange	OFF	XCSR reader initialization in progress	
Configuration	Orange Fast blinking	Orange Fast blinking	OFF	XCSR reader is in configuration mode	
	Green	Orange Fast blinking	OFF	Pairing with new transponder done：New power－up required	Only for＂re－pairing enabled models＂
	Orange blinking	Red	OFF	Maximum of pairing reached	
	Red blinking	Red	OFF	Invalid transponder detected	Transponder not blank or not Telemecanique transponder
	Orange Fast blinking	Red	OFF	Pairing process unsuccessful	Only for＂re－pairing enabled models＂
Run	Green	Orange blinking	OFF	Paired transponder detected：waiting for the start condition and／or KM1＿KM2 feedback（EDM）	Only for standalone versions
	Green	Green	ON	Paired transponder detected and all other operating conditions are correct	Door closed
	Green	Red	OFF	Paired transponder detected but the safety inputs are at the OFF state．	For Daisy－Chain models：At least one of the previous readers has its OSSDs at the OFF state（door opened，error detected or OFF state）
	OFF	Red	OFF	No transponder in the field	Door opened
Error	Red blinking	Red blinking	OFF	Invalid transponder or non－paired transponder detected：New power－up required after fault clearance	Possible attempted fraud or transponder damaged
		1，2 3，4 or 5 red flashes	OFF	Internal error detected．Contact the customer support of your country	The color of the LED1 depends on the presence of the transponder： －Green：transponder detected －OFF：no transponder detected

NOTE：The safe state is ensured when the two redundant safety outputs（OSSDs）are switched at the OFF state（i．e．guard door opened or safety switch in error mode）．

Characteristics

Product certifications	CE，cULus（The safety function of this device has been evaluated by TüV nord，not by UL），TüV，FCC，SAC，IC，RCM，E2
Maximum Safety Level	Up to category 4 PL＝e or SIL 3 （if combined with an appropriate Safety Control Unit PL＝e／SIL 3 for Single and Daisy－chain models）．
Assured operating distance（Sao）	10 mm （values above are given without misalignment between the transponder and the reader for face to face mounting）
Assured release distance（Sar）	35 mm （values above are given without misalignment between the transponder and the reader for face to face mounting）
Ambient air temperature	Operation：－ $25 \ldots 70^{\circ} \mathrm{C}\left(-13^{\circ} \mathrm{F}\right.$ to $\left.158^{\circ} \mathrm{F}\right)$ without blanking plugs or $-25 \ldots 45^{\circ} \mathrm{C}\left(-13^{\circ} \mathrm{F}\right.$ to $\left.113{ }^{\circ} \mathrm{F}\right)$ with blanking plugs Storage：$-40 \ldots 85^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F}\right.$ to $\left.185^{\circ} \mathrm{F}\right)$
Degree of protection	Conforming EN／IEC 60529：IP65，IP66 \＆IP67；Conforming DIN 40050：IP69K；Enclosure type 4，4X according to IEC 62262
Vibration resistance	$10 \mathrm{gn}(10-150 \mathrm{~Hz})$ conforming to EN／IEC 60068－2－6
Shock resistance	30 gn （11 ms）conforming to EN／IEC 60068－2－27
Protection against electric shock	Class III conforming to EN／IEC 61140
Rated operating characteristics	Ue＝ $\mathbf{2 4} \mathrm{V}$－．$\quad \mathrm{le}=\mathbf{6 0} \mathbf{~ m A}$ The power supply must meet the requirements of EN／IEC 60204－1 relative to SELV／PELV power supply
Repeat accuracy	$\leqslant 10 \% . \mathrm{Sr}$
Hysteresis	$3 \% \leqslant \mathrm{Hr} \leqslant 20 \% . \mathrm{Sr}$（given without misalignment between the transponder and the reader for face to face mounting）
Switching frequency	$<0,5 \mathrm{~Hz}$
Risk Time	＜ 120 ms （＋18 ms per additional switch in Daisy－chain configuration）
Response time	Typical：$=120 \mathrm{~ms}$（＋50 ms per additional switch in Daisy－chain configuration）and＜ 250 ms （for the Standalone models）
First－up time	＜ 5 s
Pairing mode time	10 s （after First－up time）
Number of switches in series connection（Daisy－chain）	$\leqslant 20$ XCSRC•2M12
PFH ${ }_{\text {D }}$（according to EN／ISO 13849－1 and EN／IEC 62061）	5．10－10
Mission Time（TM）	20 years
OSSD	Standalone XCSRC•1•M12 Imax $=400 \mathrm{~mA}$ per output at 24 Vdc Drop out voltage $<2 \mathrm{Vdc}$ ，Leakage current（OFF state）$<1 \mathrm{~mA}$ Maximum Load capacitance： 40 nF under 24 Vdc Single and Daisy－chain XCSRC•OM12 and XCSRC•2M12 Imax $=200 \mathrm{~mA}$ per output at 24 Vdc Drop out voltage $<2 \mathrm{Vdc}$ ，Leakage current（OFF state）$<1 \mathrm{~mA}$ Maximum Load capacitance： 40 nF under 24 Vdc

[^0]: (en) Electrical equipment should be installed, operated and maintained only by qualified personnel. No responsibility is assumed by Schneider Electric for any consequences
 C.

 2019 Schneider Electric. "All Rights Reserved."

